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Short interest in individual stocks is unstable, exhibiting sudden and large changes. We

propose a theoretical explanation for this instability, relying on a feedback loop between the

spot and the lending markets. Our theory not only addresses the occasional sudden retreat

of short sellers, but also accounts for a simultaneous increase in prices; in other words,

our theory can help explain why sellers abandon their short positions despite an increased

profitability of shorting.

The novel aspect of our theory is that it does not rely on portfolio constraints, limita-

tions to arbitrage capital, agency issues, etc. Instead, our mechanism is built on a detailed

modeling of stock-lending income and its implications for spot-market clearing. We show

that lending income gives rise to a feedback mechanism between a stock’s expected return

and short interest that can generate a “backward-bending demand,” and accordingly sudden

equilibrium shifts in short interest and expected returns.

We document that large and sudden changes in shorting activity are a broad phenomenon.

Viewed as a time series, the short interest process of many stocks exhibits jump-like features.

These features appear linked to the backward-bending demand channel that we highlight:

the stocks that satisfy an empirically verifiable condition for a backward-bending demand

curve are also the ones that show the highest incidence of large and sudden changes in short

interest.

We next outline the ingredients of our model and summarize the basic intuitions and the

supporting empirical evidence.

The model features investors with heterogeneous beliefs about the expected return of a

positive-supply risky stock: one group is optimistic, while the other holds rational beliefs.1

This difference of opinion between investors prompts them to trade with each other, with the

rational investors having an incentive to short the stock whenever the expected excess return

becomes negative. Shorting stock requires borrowing it, for a fee determined endogenously

in the lending market as a result of bargaining.

As is recognized, the presence of lending fees modifies the returns experienced by both

long and short investors. The equilibrium risk compensation (the ratio of excess return to

1. Motivated by the empirical fact that stocks with high short interest tend to have low subsequent
returns, we assume that the comparatively pessimistic investors are actually rational, but this is not an
essential assumption for our results.
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volatility, or “Sharpe ratio”) is impacted both by the magnitude of the lending fee and the

fraction of a representative lender’s shares that are shorted. Following common terminology,

we refer to the ratio of shorted-to-lendable shares as the “utilization” ratio.

All else equal, a higher utilization ratio acts as an increased subsidy for long positions,

since a larger fraction of a representative long position is lent out to short sellers. This

basic property of the model is responsible for equilibrium multiplicity, since the increased

incentive to purchase the stock ends up reducing its Sharpe ratio and consequently inducing

more shorting, thus supporting the high utilization ratio as an equilibrium outcome. Sym-

metrically, another equilibrium may exist with a lower utilization ratio, thus lower subsidy

for long positions, and consequently a higher Sharpe ratio and smaller short positions.

The discussion in the above paragraph takes the wealth share of short sellers at a given

point in time as fixed. One advantage of our dynamic setup is that we can study the evolution

of the wealth shares depending on whether investors coordinate on a high or a low shorting

equilibrium. We show that the wealth growth of short sellers is higher in the high shorting

equilibrium than in the low-shorting equilibrium. An implication is that the (stochastic)

steady state fraction of wealth controlled by short sellers is lower in the equilibrium with

low shorting. Since the Sharpe ratio is increasing in the wealth share of these investors,

the steady state Sharpe ratio may well be lower if investors coordinate on the low-shorting

equilibrium than if they coordinate on the high shorting equilibrium.

To fully explore the implications of this dynamic effect in a more realistic setup, we

extend the model to allow for multiple stocks with endogenous participation. After showing

that our main conclusions from the single-stock economy extend to the multi-stock economy,

we focus on the case of a large and a small stock, with disagreement affecting only the small

stock.2 We assume that only a small fraction of investors pay attention to the small stock

and incur a small participation cost in doing so. In this extended version of the model, we

show that the shift to a low shorting equilibrium causes rational investors to exit the market

for the small stock, since remaining in a market without a trading opportunity is not worth

2. With this assumption, the interest rate becomes essentially fixed and therefore fluctuations in the
Sharpe ratio are mirrored in the price-dividend ratio of the small stock. By contrast, in the baseline model
the assumption of log utility and i.i.d. dividend growth imply that fluctuations in the Sharpe ratio are
exactly offset by fluctuations in the interest rate, leaving the price-dividend ratio unaffected.
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paying that participation cost. The exit of rational short-sellers causes a simultaneous rise

in the price of the stock — consistent with the empirical observation that bad returns of

shorting strategies coincide with drops in short interest.3

While the main focus of the paper is theoretical, our theory may help explain some salient

time-series properties of the utilization ratio. According to the model, short-run changes in

the utilization ratio should be small and (locally) normally distributed most of the time;

but when there are changes in equilibrium, this ratio should exhibit jumps. Therefore, the

distribution of the changes in the utilization ratio should be fat-tailed. Empirically, the

utilization-ratio changes are remarkably fat tailed. The kurtosis of the residuals of an AR1

model fitted to weekly utilization data is 78.

The model also helps predict which stocks are most likely to exhibit jumps in shorting

activity. As part of Proposition 4, we identify a necessary and sufficient condition for the

incidence of jumps. This condition involves observable quantities, namely lending fees and

utilization data. Empirically, we confirm that the stocks that satisfy this condition are the

ones that are the most likely to exhibit jumps in utilization.

The paper concludes with a “case study” that illustrates the fickle behavior of short

sellers. We document that the period between November 2020 and January 2021 saw an

abrupt decline in short interest across hundreds of highly shorted stocks, and was also the

worst period for a “betting against the short sellers” strategy, i.e., a strategy that goes long

the top decile of most shorted stocks and shorts the market portfolio.

It is tempting to attribute this episode to the highly mediatized events involving the

company GameStop, which saw online-forum-coordinated retail purchases resulting in a short

squeeze of its stock. However, the broad based short-seller retreat that we focus on started

eight weeks before the GameStop episode and impacted stocks that were not particularly

discussed online by retail traders and did not experience an appreciable change in retail

purchase volume.

There are three aspects of this episode that are pertinent for our model. First, the episode

helps illustrate how abruptly and dramatically short selling can decline. Second, the retreat

3. This was the case, for example, during the period November 2020–January 2021, which we discuss
below.
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of the short sellers coincides with a rise in prices. As we highlighted above, the change

in market composition induced by an equilibrium shift is central to our explanation for

why short sellers are repelled, rather than attracted, by rising prices.4 Finally, the retreat

of the short sellers predated the spike in online discussion. One possible explanation for

this retreat was the fear of an impending change in retail-investor behavior. Absent the

backward-bending demand feature of our model, however, an impending rise in irrationality

would raise the profitability of short selling and increase short interest, which is the opposite

of what happened in the data.

The paper is organized as follows. After a brief literature review, Section 1 lays out the

baseline version of the model and Section 2 presents the main analytical results. Section

3 discusses the dynamics of the investor wealth shares. Section 4 generalizes the results

of Section 2 and provides necessary and sufficient conditions for equilibrium multiplicity.

Section 5 presents the extension to multiple stocks and Section 6 discusses the model’s

empirical implications. Section 7 concludes. Proofs, detailed descriptions of the data, and

additional results are contained in the appendix.

Related Literature

Our work relates to several strands of the asset-pricing literature. The most closely related

one considers the joint determination of lending fees, short interest, and returns. In par-

ticular, D’Avolio (2002), Duffie, Gârleanu, and Pedersen (2002), Vayanos and Weill (2008),

Banerjee and Graveline (2013), Evgeniou, Hugonnier, and Prieto (2022), and Atmaz, Basak,

and Ruan (2020) consider explicit frictions to lending and borrowing shares, which trans-

late into non-zero lending fees that in turn impact expected returns.5 Similar to D’Avolio

(2002),6 Banerjee and Graveline (2013), and Atmaz, Basak, and Ruan (2020), the lending

and spot markets clear simultaneously in our paper, but we use a different micro-foundation

4. In a static model, lower short seller demand would only be consistent with a lower price / higher
expected return.

5. Such frictions also motivated the empirical studies of Geczy, Musto, and Reed (2002), Lamont (2012),
Jones and Lamont (2002), Kaplan, Moskowitz, and Sensoy (2013), Porras Prado, Saffi, and Sturgess (2016),
and Asquith, Pathak, and Ritter (2005) among others.

6. More precisely, to a working-paper version of this study, which contains a theoretical model that did
not appear in the published article.
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to obtain a positive lending fee. Specifically, we don’t impose any hard constraint on the

shares that a long investor can lend.7 Instead, we obtain a positive lending fee by assuming

that the process of matching share lenders and borrowers is a time-consuming activity, which

requires compensation, similar in spirit to Duffie, Gârleanu, and Pedersen (2002). By taking

that route, our model allows for a more general specification of the supply curve of lendable

shares, which is not confined to being vertical.8 This specification of the supply curve for

lendable shares leads to a feedback loop between the Sharpe ratio and short interest that

is not present in the aforementioned papers (which feature unique equilibria). In addition,

our model allows us to explore the dynamic effects of an equilibrium shift, driven by the

endogenous fluctuations in the wealth shares of the different types of agents.9

An even larger number of papers assume that shorting is prohibited and analyze implica-

tions for returns. Prominent examples here include Harrison and Kreps (1978), Miller (1977),

Diamond and Verrecchia (1987), Detemple and Murthy (1997), Hong and Stein (2003), and

Scheinkman and Xiong (2003). As in Harrison and Kreps (1978) and Miller (1977), we model

the motive for trade in our paper in the convenient form of (dogmatic) differences of opinions

among agents.

A large body of work studies the empirical relation between short interest and stock

returns. Seneca (1967), Senchack and Starks (1993), Desai et al. (2002), Diether, Lee, and

Werner (2009), Asquith, Pathak, and Ritter (2005), Blocher, Reed, and Van Wesep (2013),

Beneish, Lee, and Nichols (2015), and Dechow et al. (2001) study the cross-sectional relation

and find that stocks with higher short interest under-perform those with lower short interest.

Cohen, Diether, and Malloy (2007) and Boehmer, Jones, and Zhang (2008) use proprietary

data on quantities lent as well as shorting fees and find consistent results. Duong et al. (2017)

7. Evgeniou, Hugonnier, and Prieto (2022) also does not impose a hard constraint on the quantity of
lendable shares. Instead, it assumes that the supply of lendable shares is adjusted by a monopolistic entity
to maximize lending revenue. In our paper, investors face search frictions in the lending market that make
it costly to locate lendable shares.

8. An exception is Atmaz, Basak, and Ruan (2020). In their model, individual agents’ supply curves are
vertical, but the aggregate supply curve has finite elasticity due to composition effects when aggregating
across agents.

9. The fact that shorting requires borrowing shares and is subject to natural collateral requirements has
several interesting general equilibrium implications, as explored by Fostel and Geanakoplos (2008), Simsek
(2013), and Biais, Hombert, and Weill (2021). In contrast, our model focuses on the general equilibrium
implications of the associated lending fees.
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studies the empirical relation between lending fees and stock returns and finds that high

lending fees predict lower future returns. Drechsler and Drechsler (2014b) documents that

asset pricing anomalies concentrate in stocks with high shorting fees. Lamont and Stein

(2004) studies the information content in aggregate short interest and finds that short interest

declined as stock market valuations rose in the late 90’s. Rapach, Ringgenberg, and Zhou

(2016) shows that the predictive power of aggregate short interest stems predominantly from

a cash-flow channel.

Our paper also relates to a sizable theoretical literature analyzing multiple equilibria

in asset pricing and macroeconomics. Multiple equilibria can arise through a number of

mechanisms, chief among them a) bubbles (or money) in OLG economies, b) increasing

returns to scale and production externalities, and c) portfolio constraints.10 The mechanism

that gives rise to multiple equilibria in our paper is different, since it relies on the interaction

between the lending and the spot markets. We also note in this context that, while Vayanos

and Weill (2008) features multiple equilibria in the presence of shorting frictions and fees, the

multiplicity of equilibria pertains to agents’ choice of market to join, which renders one asset

more liquid (that is, easier to find) and thus increases its attractiveness to future entrants.

In addition, in our setup the spot market is not a search market, but is Walrasian.11

Finally, several recent papers target specifically the set of events involving GameStop.

See, for instance, Pedersen (2022) and Allen et al. (2021).

1 Model

1.1 Agents: life-cycle and preferences

Time is continuous and infinite for tractability. To obtain a stationary wealth distribu-

tion, we follow Gârleanu and Panageas (2015) and assume that investors continuously arrive

10. We refer the reader to the survey by Benhabib and Farmer (1999), which lists and discusses the different
mechanisms that lead to multiple equilibria and indeterminacies. Recent examples of papers using multiple-
equilibrium models in asset pricing include Gârleanu and Panageas (2021), Khorrami and Zentefis (2020),
Khorrami and Mendo (2021), Zentefis (2018), and Farmer and Bouchaud (2020).
11. Coordination issues are central in economies admitting multiple equilibria, but can also be of first-

order importance in unique-equilbrium settings, as highlighted by Abreu and Brunnermeier (2002) in a
model featuring binding portfolio constraints and a non-Walrasian price protocol.
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(“births”) and depart (“deaths”) from the economy. Per unit of time a mass π of investors

arrives, and a mass π departs. Therefore, the population of agents born at time s ≤ t and

still remaining at time t is πe−π(t−s), while the total population is constant and equal to∫ t
−∞ πe−π(t−s)ds = 1. “Births” and “deaths” should be understood as arrivals and departures

of market participants, a point that will become clearer in Section 5, where we introduce

multiple stocks.

To introduce trade in equities, we assume that investors have heterogeneous beliefs. For

simplicity, a fraction ν ∈ (0, 1) of investors perceive the correct data-generating process.

We refer to them as rational investors (“R” investors). The remaining fraction are overly

optimistic (we model this optimism shortly), and we refer to these investors as “I” investors.

For tractability, both investors have logarithmic utilities and their expected discounted

utility from consumption is

V i
t ≡ Ei

t

∫ ∞

t

e−(ρ+π)(u−t) log
(
ciu,t

)
du (1)

for i ∈ {I, R}, with ρ a discount factor and ciu,t the time-u consumption of an agent of type i

born at time t ≤ u. The notation Ei
t reflects the different investor beliefs. Because of death,

the effective discount rate is ρ+ π.

Before proceeding, we note that, while we require heterogeneous beliefs to introduce a

motivation for trading, the assumption that one group has correct beliefs helps mostly to

save notation and can be easily relaxed. The same applies to the assumption that there

are only two groups of investors, which can be relaxed to allow for multiple investor types,

including a continuum (Section 4). Similarly, the overlapping-generations structure is just

a technical device to ensure that no investor type disappears in the long run.12 Finally, in

setting up the model we make the (conventional) assumption that agents maximize over both

their consumption and portfolio choices, which we introduce shortly. Our model is, however,

equivalent to one in which agents delegate their portfolio decisions to professional managers,

and managers maximize their clients’ expected portfolio (logarithmic) growth according to

the managers’ beliefs (R or I). The investors in our model can therefore be equivalently

12. In particular, the lack of inter-generational risk sharing, which is a feature of some of these models, is
not driving any of the results in this paper.
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thought of as institutional investors.

1.2 Endowments

In order to support their consumption over their lives, we assume that the arriving investors

at time t are equally endowed with shares of new “trees,” which arrive at time t.13 Letting

s ≤ t denote the time of arrival of a tree, we specify its time-t dividends as

Dt,s = δe−δ(t−s)Dt, (2)

where δ > 0 captures depreciation and Dt follows a geometric Brownian motion with mean

µD and volatility σD > 0,

dDt

Dt

= µDdt+ σDdBt, (3)

with Bt a standard Brownian motion. Accordingly, the time-t total endowment of this

economy is the sum of the endowment produced by all trees born up to to time t,

∫ t

−∞
Dt,sds =

(∫ t

−∞
δe−δ(t−s)ds

)
×Dt = Dt.

The arriving investors sell their shares, which become part of the market portfolio. An

implication of assumption (2) is that the dividend growth, dDt,s

Dt,s
= (µD − δ)dt + σDdBt, is

the same for any vintage s, and equals the dividend growth of the market portfolio. In turn,

the return of the market portfolio, dRt, can be written as

dRt = µt dt+ σt dBt, (4)

where µt and σt are stochastic processes to be determined in equilibrium.

In the real world, shorting frictions are more relevant for a small fraction of stocks rather

13. The assumption that investors are endowed with shares of newly arriving trees follows Gârleanu, Kogan,
and Panageas (2012) and Panageas (2020). This assumption is just a convenient way to endow new cohorts
as compared to introducing labor income (as in Gârleanu and Panageas (2015) or Gârleanu and Panageas
(2020)). Since the goal of the overlapping generations structure in this paper is merely to ensure stationarity,
we adopt this more convenient shortcut.
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than the broad stock market. In Section 5 we extend the model to allow for multiple stocks

and study the special case in which the shorting frictions are relevant for small stocks only.

1.3 Beliefs

The irrational investors are optimistic and believe that the aggregate endowment grows at

the rate µI > µD. Irrational investors hold this optimistic view over their life-time and do

not learn (“dogmatic beliefs”). Introducing learning would be a distraction for the purposes

of this paper and therefore we omit it.

For future reference, we define

η ≡ µI − µD
σD

. (5)

1.4 Dynamic budget constraint and short-selling frictions

The main departure from a frictionless market is that selling the stock short requires paying

a lending fee, ft. Specifically, letting W i
t,s denote the time-t wealth of an investor of type i

who was born at time s ≤ t and wit,s denote the fraction of wealth invested in the stock, the

dynamic budget constraint is

dW i
t,s = W i

t,s

(
rt + π + nt + wit,s

(
µt − rt + λit,s

)
− cit,s
W i
t,s

)
dt+ wit,sW

i
t,sσtdBt, (6)

where rt is the equilibrium interest rate and πW i
t,s is the income per unit of time earned

from annuitizing her entire wealth (since she has no bequest motives).14 The non-standard

terms in equation (6) are the λit,s and nt, which we describe next.

The term λit,s captures the presence of lending fees. It is defined as

λit,s ≡ λt(w
i
t,s) ≡ ft ×

(
1{wi

t,s<0} + τyt1{wi
t,s≥0}

)
, (7)

14. We follow Blanchard (1985) in assuming the existence of a competitive insurance company. Investors
pledge their wealth upon death in exchange for receiving an income stream while alive. This income stream
is equal to the hazard rate of death, π, times the wealth of the investor, so that the insurance company
breaks even.
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where yt is the fraction of a long portfolio that is lent out by the representative “brokerage

house” and τ is the fraction of the lending fees that accrues to the investor. (We discuss the

determination of yt, τ , and ft shortly.) Equation (7) reflects that an investor with a short

position wit,s < 0 has to pay a proportion ft of the value of her entire short position, |wit,s|W i
t,s,

so that the net-of-fee excess rate of return per dollar shorted is − (µt − rt + ft) dt − σtdBt.

Similarly, an investor holding a positive position, wit,s > 0, obtains an excess rate of return

equal to (µt − rt + τytft) dt+ σtdBt on her stock investments.

Market clearing for share lending requires that the fraction of the representative long

position that is lent out, yt, times the aggregate long position, W+
t , equal the value of the

aggregate short position, W−
t :

ytW
+
t = W−

t , (8)

where

W−
t ≡

∑
i∈{I,R}

∫ t

−∞
|wit,s|W i

t,s1{wi
t,s<0}ds (9)

W+
t ≡

∑
i∈{I,R}

∫ t

−∞
wit,sW

i
t,s1{wi

t,s>0}ds. (10)

Following industry terminology, we henceforth refer to the quantity yt, as the utilization

ratio (or utilization for short), since it captures the fraction of lendable shares that are

utilized by shorters.

To close the model, we must specify the lending frictions and derive the fee. In the text,

we specify ft through a supply curve ft = f(yt) given by a non-decreasing function f . In

Appendix A, however, we model explicitly a search-and-bargaining friction yielding such a

supply curve. Specifically, we introduce competitive firms specializing in servicing either

borrowers (“brokers”) or lenders (“security lenders”). Brokers are faced with a demand

from would-be short sellers, while security lenders obtain investors’ long portfolios. Brokers

and security lenders are matched pairwise subject to a “labor cost” and engage in bilateral

negotiations that result in a lending fee ft. In equilibrium, the fee is the same for all shares
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that are lent, and therefore the total revenue from lending shares equals the fee multiplied

by the value of all shares lent. This revenue is shared between the stock owners (a fraction

τ of the lending revenue) and the households as compensation for their labor (the remaining

1− τ fraction). These shares are driven by the relative bargaining powers of stock borrowers

and lenders.

The term nt in equation (6) captures the compensation for the labor cost in operating the

matching technology. Denoting aggregate wealth at time t by Wt, we have nt =
(1−τ)ftW−

t

Wt
.

We note that aggregate share lending fees, ftW
−
t , accrue back to the households as the sum

of lending income to long portfolios, τftytW
+
t = τftW

−
t , and compensation for operating

the matching technology, ntWt = (1− τ)ftW
−
t .

1.5 Equilibrium definition

Equilibrium in the lending market requires that the supply of lendable shares ytW
+
t is equal

to the demanded short interest, W−
t (Equation (8)).

The rest of the equilibrium definition is standard. We require that investors I and R

maximize (1) over cit,s and w
i
t,s subject to the budget constraint (6), and µt, rt, and σt are such

that the bond market clears,
∑

i∈{I,R}
∫ t
−∞ νi

(
1− wit,s

)
W i
t,sds = 0, the stock market clears,∑

i∈{I,R}
∫ t
−∞ νiwit,sW

i
t,sds = Pt, and the goods market clears,

∑
i∈{I,R}

∫ t
−∞ νicit,sds = Dt. By

Walras’ Law, market clearing of the bond market implies stock market clearing and vice

versa, and accordingly the asset-market clearing requirements can be written equivalently as

Wt =
∑

i∈{I,R}
∫ t
−∞ νiW i

t,sds = Pt.

For future reference, we note that stock market clearing implies yt =
W−

t

W+
t

=
W−

t

Pt+W
−
t

< 1.

It also implies that there is a simple, monotone relation between the utilization ratio, yt, and

short interest,
W−

t

Pt
, given by yt =

W−
t

Pt

1+
W−

t
Pt

.

2 Analysis

We analyze the model in two steps. First, we consider a special parametric case that allows

us to characterize all equilibrium quantities in closed form. The special case we analyze

is the “elastic supply” case, that is, the limiting case where the supply of lendable shares
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is horizontal at some level f(yt) = φ. (As we explain in Appendix A, this special case

corresponds to a particular specification for the cost of lending out shares.) Section 4 extends

the analysis to allow for an increasing function f(yt).

2.1 Optimal portfolio and consumption

For a log investor the wealth-to-consumption ratio is constant and equal to
cit,s
W i

t,s
= ρ+π.Given

homothetic preferences, all agents of a given type choose the same portfolio independent of

their cohort, s; therefore we may write wit (rather than wit,s). Additionally, a convenient

property of logarithmic utility is that the portfolio is myopic and maximizes the logarithmic

growth rate of an investor’s wealth, under the investor’s beliefs,

wit = argmax
w

{
w
(
µt + ησt1{i=I} − rt + λt(w)

)
− 1

2
(wσt)

2

}
, (11)

where 1{i=I} is an indicator function taking the value one when i = I and zero otherwise.

Letting µ̂it ≡ µt + ησt1{i=I} denote the expected return on the stock as perceived by

investor i ∈ {I, R}, the optimal portfolio is

wit =


µ̂it−rt+ft

σ2
t

if µ̂it − rt + ft < 0

µ̂it−rt+τftyt
σ2
t

if µ̂it − rt + τftyt > 0

0 otherwise.

(12)

Figure 1 depicts equation (12), the optimal portfolio of investor i as a function of
µ̂it−rt
σ2
t

.

The figure shows the presence of an “inaction” region: for values of
µ̂it−rt
σ2
t

between − ft
σ2
t
and

− ft
σ2
t
τyt, the investor optimally chooses a portfolio weight of zero.

One straightforward implication of equation (12) is that if investor R is actively shorting

(wRt < 0) then the expected excess rate of return per dollar shorted is positive even after

netting out the fee ft.
15

15. This statement uses the assumption that agent R has the correct beliefs, and is a direct consequence of
the agent’s risk aversion. For a precise calculation, evaluate (12) with i = R, impose wR

t < 0, and re-arrange
to obtain −(µt − r− ft) = −(µ̂R

t − r− ft) = −wR
t σ

2
t > 0. The term −wR

t σ
2
t , which equals the absolute value

of the covariance of the stock’s return with the short seller’s portfolio, is the risk compensation to the agent
for taking a short position.
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µ̂i
t−rt
σ2
t

wi
t

− ft
σ2
t
τyt− ft

σ2
t

Figure 1: The optimal portfolio weight of investor i as a function of that investor’s perceived

value of
µ̂it−rt
σ2
t

.

2.2 Equilibrium

It is useful to start by defining the wealth-weight ωit of investors of type i ∈ {I, R},

ωit ≡
νi
∫ t
−∞ πe−π(t−s)W i

t,sds

Wt

. (13)

To save notation, henceforth we refer to ωRt simply as ωt, and therefore ωIt = 1− ωt. Using
cit,s
W i

t,s
= ρ+ π, the goods-market and stock-market clearing requirements imply

Dt =
∑

i∈{I,R}

∫ t

−∞
νiπe−π(t−s)cit,sds = (ρ+ π)

∑
i∈{I,R}

∫ t

−∞
νiπe−π(t−s)W i

t,sds

= (ρ+ π)Wt = (ρ+ π)Pt. (14)

Taking logarithms gives d logDt = d logPt and therefore the stock market volatility equals

σt = σD. The implication of a constant stock volatility is convenient for obtaining closed-

form solutions. In Section 5 we discuss extensions of the model that allow for a time-varying

price-dividend ratio and volatility by introducing multiple stocks.

As mentioned earlier, in an effort to obtain a closed-form solution we assume that the

supply of lendable shares is perfectly elastic at the rate φ:

Assumption 1 f(y) = φ > 0.

We maintain this assumption until Section 4. In preparation for the description of the

13



equilibrium, we start with the following definition and assumptions on the parameters.

Definition 1 Define ω∗
1 and F (ω) as

ω∗
1 ≡1− σD

η − φ
σD

, (15)

F (ω) ≡
(
σD − ω

(
(1 + τ)

φ

σD
− η

))2

− 4τ
ω2

1− ω

φ

σD

(
σD + (1− ω)

(
φ

σD
− η

))
. (16)

Assumption 2 Assume that η, φ, σD, and τ are such that

(1 + τ)
φ

σD
> η >

φ

σD
, (17)

ω∗
1 >

σD
(1 + τ) φ

σD
− η

> 0, (18)

and F (ω) has a unique root in the interval (0, 1), denoted by ω∗
2.

The following proposition guarantees that Assumption 2 can be satisfied.

Proposition 1 There exists an open set of positive values η, φ, σD, and τ that satisfy

Assumption 2.

The next proposition describes the equilibria in our economy.

Proposition 2 Suppose that Assumption 2 holds. Then ω∗
2 > ω∗

1 and the equilibria in this

economy can be described as follows.

i) If ωt ∈ (ω∗
2, 1] there is no short-selling in equilibrium. The equilibrium is unique and

the Sharpe ratio κt ≡ µt−rt
σD

is given by

κt =

 σD − (1− ωt) η if ωt > 1− σD
η

σD
1−ωt

− η if ωt ∈ (ω∗
2, 1− σD

η
]
. (19)

ii) If ωt ∈ [ω∗
1, ω

∗
2], then there are three equilibria. The first equilibrium continues to be

given by (19) and involves no short-selling. The second and third equilibria involve shorting

and utilization, yt, corresponds to the two roots y+ and y− of the quadratic equation

y

(
η +

σD
ωt

− φ

σD
(1− τy)

)
−

(
η − σD

1− ωt
− φ

σD
(1− τy)

)
= 0, (20)

14



which has two real roots y+ and y− in the interval (0, 1). The Sharpe ratio in the equilibria

associated with y+ and y− are

κ±t = σD − (1− ωt) η −
φ

σD

(
ωt + τy±(1− ωt)

)
. (21)

iii) If ωt ∈ [0, ω∗
1), then the equilibrium is unique and involves shorting. In this case only

the larger of the two roots (y+) of equation (20) lies in the interval (0, 1), and the unique

equilibrium Sharpe ratio is given by κ+.

In all three cases the interest rate is given by

rt = ρ+ π + µD − δ − κtσD. (22)

Additionally, because κt, rt, and yt are functions of ωt, so is wRt , and the stochastic

process for ωt, dωt = µω,tdt + σω,tdBt, is Markovian with volatility σω,t = σω(ωt) and drift

µω,t = µω(ωt) given by

σω(ωt) = ωt
(
wRt − 1

)
σD, (23)

µω(ωt) = ωt
(
−µD + σ2

D − π + rt − ρ+ wRt
(
µt − rt + λt(w

R
t )
)
− wRt σ

2
D

)
+ νRδ. (24)

Figure 2 illustrates Proposition 2. The left graph plots κ (ωt), the Sharpe ratio, as

a function of the wealth share of rational agents, ωt. As a benchmark, the line labeled

“Costless shorting eqlm” depicts σD − (1− ωt) η, i.e., the Sharpe ratio that would obtain

in this economy in the absence of any shorting frictions (φ = 0). The curve “No shorting

eqlm” depicts the Sharpe ratio in the equilibrium that involves no shorting for the values

of ωt that such an equilibrium exists. Similarly for the curves “Med. shorting eqlm” and

“High shorting eqlm,” which depict equilibria with shorting for the values of ωt that permit

such equilibria. To expedite the exposition of the results, we postpone a discussion of the

quantitative implications of the model until Section 5.2. The graphs in the current section

are meant to illustrate qualitative properties of the model.

The figure shows that when ωt is larger than 1 − σD
η

the lines “Costless shorting eqlm”

and “No shorting eqlm” coincide, reflecting that all investors invest strictly positive amounts

15
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Figure 2: Left: All possible equilibrium values of the Sharpe ratio, as a function of ωt. Right:
The utilization ratio, y(ωt), in all of the equilibria as a function of ωt.

in the stock market in this region of ωt.

When ωt becomes smaller than 1− σD
η

(but larger than ω∗
2), the rational investor puts zero

weight on stocks, but the shorting fee φ deters her from actively short-selling. Since only the

irrational investor is marginal in financial markets, the lines “Costless shorting eqlm” and

“No shorting eqlm.” deviate from each other when ωt < 1− σD
η
. In this region the magnitude

of the lending fee, φ, does not impact the Sharpe ratio directly (only by deterring the R

investors from shorting).

If ωt becomes smaller than ω∗
2 (but larger than ω∗

1) the economy exhibits three equilibria.

In the first equilibrium, there is still no shorting. In the second and third, there is active

shorting by the rational investor. Across these three equilibria, the higher the extent of

shorting, the lower the Sharpe ratio. This is illustrated in the right graph of Figure 2.

Finally, if ωt becomes smaller than ω∗
1, then the equilibrium becomes unique and involves

shorting.16

16. To see why there can be no equilibrium without shorting when ωt < ω∗
1 , assume otherwise. Indeed

assume that the R investor holds zero stocks and is not marginal in the stock market
(
wR

t = 0
)
. The

market clearing requirement, ωtw
R
t + (1− ωt)w

I
t = 1, along with wI

t = κt+η
σD

implies that the Sharpe
ratio would be κt = σD

1−ωt
− η. Under this supposition, it would therefore be the case that µt − r + φ =

σD
(
κt +

φ
σD

)
= σD

(
σD

1−ωt
− η + φ

σD

)
< 0, where the inequality follows from ωt < ω∗

1 . Because µt−r+φ < 0,

equation (12) implies that the R investor would want to short the market, contradicting the assumption that
she is optimally holding zero stocks.
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The presence of a region where multiple equilibria co-exist is not a very common feature

of asset pricing models, especially when there is only one good and one positive-supply asset.

To better understand the source of this multiplicity, it is useful to provide a concise derivation

of the key statements in Proposition 1.

Specifically, suppose that we consider equilibria that involve active shorting (wRt < 0).

In such equilibria, the optimal portfolio holdings can be expressed as

wRt =
κt +

φ
σD

σD
(25)

wIt =
κt + η + φ

σD
τyt

σD
, (26)

while asset-market clearing requires

ωtw
R
t + (1− ωt)w

I
t = 1. (27)

Combining equations (25)–(27) leads to

κt = σD − (1− ωt) η −
φ

σD
(ωt + τyt(1− ωt)) , (28)

which is equation (21) of Proposition 1. Note that the partial derivative of κt with respect

to yt is negative. This is intuitive: For a given ωt, a higher value of yt increases the effective

rate of return to (long-portfolio) stock holders (I investors).

The dependence of the Sharpe ratio, κt, on utilization, yt, gives rise to a feedback loop

between these two quantities. A higher value of yt increases the rate of return on a long

position and strengthens investor I’s demand for the asset. This increased demand lowers

the Sharpe ratio to clear the market. The lower Sharpe ratio strengthens the short-sellers’

appetite to borrow the stock and short it. In turn, the increased shorting demand raises the

utilization ratio, yt, increasing the effective return to I investors, which further reduces the

Sharpe ratio, etc.

These self-reinforcing effects are the root cause of the multiple equilibria. The easiest

way to see this is by completing the computation of the Sharpe ratio, which requires us to

17



determine the value of yt that clears the lending market. Indeed, in any equilibrium involving

wRt < 0 and wIt > 0 we must have

yt =
W−
t

W+
t

=
−wRt WR

t

wItW
I
t

= −w
R
t

wIt
× ωt

1− ωt
. (29)

Using (25) to compute the ratio
wR

t

wI
t
gives

yt = −
κt +

φ
σD

κt + ηI + φ
σD
τyt

× ωt
1− ωt

=
η − σD

1−ωt
− φ

σD
(1− τyt)

η + σD
ωt

− φ
σD

(1− τyt)
, (30)

where the last line follows from (28) after collecting terms and simplifying. Rearranging

(30) gives the quadratic equation (20), which is the key equation of Proposition 1. The

rest of Proposition 1 is devoted to studying this quadratic equation and confirming that its

roots correspond to valid equilibria (with non-zero shorting). The proposition shows that

additionally there is an equilibrium with zero shorting.

Remark 1 The fact that there are three equilibria, one of which features no shorting, is an

implication of there being only two types of agents in the model. With more than two types

of agents, more than three equilibria can obtain. Also, in the case of multiple equilibria, all

of the equilibria can involve strictly positive short interest, as we show in Appendix B.

Remark 2 The presence of multiple equilibria implies that the aggregate demand curve for

the stock, D(κ) ≡ W+
t (κ, y(κ)) −W−

t (κ, y(κ)) is a backward-bending function of κ (where

y(κ) is implicitly defined by the first line of equation (30)). The market-clearing requirement,

D(κ) = 1, along with the fact that there are multiple values of κ such that D(κ) = 1, implies

that D(κ) is not monotonically declining, but instead is backward bending. As observed by

Gennotte and Leland (1990), a backward bending demand curve gives rise to discontinuous

changes in equilibrium. This necessary instability is illustrated in Figure 2: when the value of

the continuous-path wealth-share process ωt increases from below ω∗
1 to above ω∗

2, the processes

κt and yt experience discontinuous changes on the interval [ω∗
1, ω

∗
2] irrespective of how market
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participants select between high, medium, and no shorting equilibria.17

2.2.1 Multiplicity and amplification

In our model multiplicity is a convenient way to illustrate a mutually reinforcing feedback

loop between the Sharpe ratio, κt, and utilization, yt. Before presenting general conditions

that can lead to equilibrium multiplicity, in this section we confine attention to situations

where the shorting market is active, but the equilibrium is unique. We show that even when

the equilibrium is unique, the feedback loop between κt and yt is still present and becomes

the source of an “amplification” mechanism.

Specifically, assume that ωt < ω∗
1, so that the shorting market is active and the equi-

librium is unique. In this region, consider the impact of a change in the parameter η,

which governs the optimism of irrational investors, on the Sharpe ratio, κ. Next, define

G (y, κ; η) ≡ y
(
κ+ η + φ

σD
τy

)
+ ωt

1−ωt

(
κ+ φ

σD

)
and note that G (y+, κ; η) = 0, by Equa-

tion (30). By the implicit function theorem, dyt = −Gκ

Gy
dκ− Gη

Gy
dη. In turn, totally differen-

tiating Equation (28) yields dκt = −(1− ωt)dη − φ
σD
τ (1− ωt)

dyt
dη
dη. Combining these two

equations yields

dκt = Λdη + Φdκt, (31)

where Φ = φ
σD
τ (1− ωt)

Gκ

Gy
and Λ = − (1− ωt) +

φ
σD
τ (1− ωt)

Gη

Gy
.

The quantity Λ captures the “direct” effect of a change in η on κt. The presence of the

term Φ on the right-hand side of Equation (31) illustrates the presence of an “amplification”

effect. Indeed, iterated substitution yields

dκt = Λdη + Φdκt = Λdη + Φ(Λdη + Φdκt)

= Λ (1 + Φ) dη + Φ2dκt

= Λ
(
1 + Φ + Φ2 + ...

)
dη =

Λ

1− Φ
dη.

(32)

17. For instance, if the market participants always coordinate on the high shorting equilibrium, the jump
will occur when ωt = ω∗

2 , and if market participants coordinate on the no shorting equilibrium, the jump
will occur at ω∗

1 .
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Lemma 2 in the Appendix shows that in the region where the equilibrium is unique, Φ is

between 0 and 1. Equation (32) is reminiscent of economic models that contain a “multiplier”

effect. An increase in η has the direct effect of lowering the Sharpe ratio, since the optimists

become more optimistic. However, this direct effect starts a “spiral” by increasing utilization,

yt, leading to a further reduction in the Sharpe ratio by a fraction Φ < 1 of the original

increase, further increasing y, lowering κ by a further Φ2 of the original effect, etc. The

expression for the fraction Φ is given by the product of a) how much a change in utilization,

yt, lowers the Sharpe ratio, − φ
σD
τ (1− ωt), and b) the impact of a change in the Sharpe ratio

on utilization, −Gκ

Gy
.

The main difference between the regions of multiplicity, ωt ∈ (ω∗
1, ω

∗
2), and uniqueness,

ωt < ω∗
1, is that in the multiplicity region the feedback loop between κt and yt becomes so

strong that Φ > 1 for some values of y.18

3 Dynamics of the wealth shares

When multiple equilibria are possible, both the drift rate µRt (ωt) of the wealth share of type

R investors and the expected logarithmic growth rate of their wealth are higher in equilibria

that feature higher yt, as the next proposition shows.

Proposition 3 For a fixed wealth share of the R-agents, ωt, consider two equilibria A and

B with the following properties: (1) wRt ≤ 0 in both equilibria A and B, and (2) yBt > yAt

(and accordingly κBt < κAt ).

Then the drift of investor R’s wealth share in equilibrium i ∈ {A,B}, µiω (ωt), satisfies
µBω (ωt) > µAω (ωt). In addition, the drift of the logarithmic growth rate of investor R, given

by

gt ≡ rt +max
w≤0

{
w (κtσD + φ)− 1

2
(wσD)

2

}
− (ρ+ π) , (33)

is higher in equilibrium B than in equilibrium A, i.e., gB (ωt) > gA (ωt).

18. For instance, one can show that Φ > 1 for values of y in a neighborhood of y−, while Φ < 1 in a
neighborhood of y+. An implication is that — using the common definition of stability — the equilibria
corresponding to y+ and y = 0 are stable, while the equilibrium associated with y− is unstable.
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Figure 3: An illustration of Proposition 3. Simulating the model for the case in which market
participants coordinate on the “high shorting” (respectively, “no shorting”) equilibrium, the
figure depicts the stationary distribution of the wealth share of the rational investor, ωt, for
the economy of Figure 2.

Figure 3 provides an illustration of Proposition 3. The figure shows the stationary dis-

tribution of ωt in the equilibrium associated with no shorting for values ωt ∈ (ω∗
1, ω

∗
2) and in

the equilibrium associated with the highest shorting, y+ (ωt) , for ωt ∈ (ω∗
1, ω

∗
2). The figure

shows that the stationary distribution of ωt has a higher mean in the high-shorting equi-

librium rather than in the no-shorting equilibrium. This is consistent with Proposition 3,

which asserts a higher (logarithmic) growth rate for the wealth of R investors in the second

equilibrium.

When comparing a high-shorting to a low-shorting equilibrium, therefore, one must ac-

count for two competing effects on the stationary mean of the Sharpe ratio κt. On the one

hand, for a fixed ωt the Sharpe ratio is lower in the high-shorting equilibrium. On the other

hand, low values of ωt become infrequent in the high-shorting equilibrium. The first channel

makes the stationary mean of the Sharpe ratio lower in the high-shorting equilibrium, but

the second channel has the opposite effect. The overall effect on the stationary value of the

Sharpe ratio is ambiguous. This observation will become important in Section 5, when we

discuss the impact of an equilibrium shift on the price-dividend ratio of a small stock.
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4 Arbitrary Supply Curve for Lendable Shares

In Section 2 we assumed a perfectly elastic supply curve for lending shares (f(y) = φ), which

allowed us to solve the model in terms of a simple, quadratic equation. Here we revisit our

main result, namely the existence of multiple equilibria, for an arbitrary (differentiable) non-

decreasing supply curve ft = f(yt). In addition, to allay possible fears that our results are

special to the the discrete nature of the two-type distribution we considered so far,19 the

following proposition allows for a continuous distribution of beliefs (with connected support).

Proposition 4 Let h(y) ≡ f(y) (1− τy) . If there exists a value y ∈ [0, 1) with (a) h′(y) < 0

and (b) σ2
D < 1

4
(1 − y)2|h′(y|, then there exist wealth distributions over beliefs for which

multiple equilibrium values of yt (and κt) obtain.

A key role in Proposition 4 is played by the function h(y). This function captures the

difference between the (proportional) fee paid by a short seller, f(y), minus the (proportional)

lending income received by a long investor, τf(y) y. To understand why the condition that

h′(y) < 0 for some y ∈ [0, 1) is necessary for multiple equilibria, suppose that there are (at

least) two equilibria with yt,1 < yt,2. From market clearing of the spot market, it must be

that, in the second equilibrium, both long and short investors choose a portfolio of larger

absolute value than in the first equilibrium: yt,1 < yt,2 =⇒ |wRt,1| < |wRt,2| and wIt,1 < wIt,2.
20

An immediate consequence is that wIt,1 −wRt,1 < wIt,2 −wRt,2. From the expressions for the

portfolio weights of investors, (25) and (26), this inequality is equivalent to f(yt,1) (1− τyt,1) >

f(yt,2) (1− τyt,2), that is, h(yt,1) > h(yt,2). Since f is assumed differentiable, there exists

y ∈ (yt,1, yt,2) such that h′ (y) < 0 (Mean Value Theorem).

Proposition 4 shows that condition (a) — when combined with condition (b) — is not

just necessary, but also sufficient for the existence of multiple equilibria, in the sense that

there exists (an open set of) wealth distributions over beliefs that ensure the existence of

multiple equilibria. In the next section, where we present a version of the model with a large

19. Note also that Appendix B illustrates multiple equilibria obtaining with three agent types.

20. The fact that wR
t < 0 along with Equations (27) and (29) imply that yt =

ωt|wR
t |

1+ωt|wR
t | , which is an

increasing function of |wR
t | (for any given ωt). Accordingly, yt,1 < yt,2 implies that |wR

t,1| < |wR
t,2|. In turn,

by market clearing, wI
t =

1+ωt|wR
t |

1−ωt
, and therefore |wR

t,1| < |wR
t,2| implies wI

t,1 < wI
t,2.
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and a small stock, we show that condition (b) is satisfied as long as investor disagreement

pertains to the idiosyncratic risk of a small stock. (See Remark 3 in the next section).

5 Multiple Risky Assets and the Price-Dividend Ratio

In the baseline model, the price-dividend ratio and the volatility of the stock market are

both constant. This is an implication of a) logarithmic utility over intermediate consumption

(which implies a constant wealth-to-consumption ratio) and b) a single asset in positive net

supply. As is typical of models with similar setups, fluctuations in the interest rate offset

the fluctuations of the risk premium, thus rendering the overall discount rate — and by

implication the price-dividend ratio21 — constant.

We next introduce a second risky asset to study the model implications for the price-

dividend ratio. After extending Proposition 2 to this setting — a result of independent

interest — we consider a limiting case of the multi-asset model that permits simple compu-

tations. Specifically, we study the limit in which there is a “small” stock subject to shorting

costs and a “large” stock that can be shorted costlessly. In that limit, only the endowment

of the large stock matters for the interest rate and thus the price-dividend ratio of the small

stock is time varying and reflects variations in its risk premium.

5.1 Multiple risky assets

In this section we introduce an additional Lucas tree (stock 2) to our baseline model, which

is not subject to any trading frictions, and accounts for a potentially large part of the total

market capitalization. We continue to assume that borrowing stock 1 requires lending fees,

as in the baseline model.

We allow one more feature, in the spirit of the “limited recognition hypothesis” of Merton

(1987). Specifically, while all investors participate in the markets for stock 2 and the risk-free

asset, only a fraction of investors pays any “attention” to stock 1. The remaining fraction of

investors simply optimize their portfolio over the risk-free asset and stock 2 and assign zero

weight to stock 1.

21. Note also that the expected dividend growth is constant.
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To ease the comparison of the results of this section with Proposition 2, we maintain the

assumption that the lending supply curve is horizontal, and the lending fee is constant and

equal to φ.

We assume that the equilibrium returns on stocks 1 and 2 follow a (possibly correlated)

vector diffusion process of the form

dR1,t = µ1,tdt+ σ1,tdB1,t + btσ2,tdB2,t (34)

dR2,t = µ2,tdt+ σ2,tdB2,t, (35)

where B1,t and B2,t are independent Brownian motions, and µ1,t, µ2,t, σ1,t, σ2,t, and bt are

determined in equilibrium. We assume that investors I believe that Brownian motion 1

follows the dynamics22 dB1,t+ ηdt, while no investor has any belief distortions pertaining to

Brownian motion 2.

To facilitate the statement of equilibrium returns, we define m̃1,t ≡ m1,t

ω̂t
as the ratio of

the stock-1 market capitalization share, denoted by m1,t, to the wealth share of all investors

participating in the market for stock 1, denoted by ω̂t. We also define κ1,t ≡ (µ1,t−r)−bt(µ2,t−r)
σ1,t

as the Sharpe ratio of a portfolio long 1 unit of asset 1 and short bt units of asset 2.

Proposition 5 In an equilibrium with shorting in asset 1 (yt > 0), yt is given by the root(s)

of the quadratic equation

0 = y

(
η +

m̃1,t

ωt
σ1,t −

φ

σ1,t
(1− τy)

)
−
(
η − m̃1,t

1− ωt
σ1,t −

φ

σ1,t
(1− τy)

)
(36)

that lie(s) in the interval (0, 1), and the Sharpe ratio is given by

κ1,t = m̃1,tσ1,t − (1− ωt) η −
φ

σ1,t
(ωt + (1− ωt) τyt) . (37)

Similarly, in an equilibrium without shorting in asset 1 we have κ1,t = σ1,tm̃1,t−(1− ωt) η

22. More formally, the Radon-Nikodym derivative of the true probability measure with respect to the
subjective one is given by

ZI
t ≡ e−

η2

2 t+ηB1,t .
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if investor R holds an interior position in asset 1 and κ1,t =
σ1,tm̃1,t

1−ωt
− η otherwise.

The excess return to asset 2 is given by the conventional CAPM relation

µ2,t − rt = btσ
2
2,tm1,t + σ2

2,tm2,t. (38)

Equations (36) and (37) are the same as (20) and (21), respectively, except that the

volatility, σD, is replaced by m̃1,tσ1,t. The reason for this replacement is intuitive: In the case

of a single stock, the risk of that stock, σD, is aggregate (by construction) and commands

a risk premium. When there are multiple stocks, the risk compensation for bearing the

idiosyncratic risk23 of stock 1, σ1,t, is multiplied by m̃1,t, i.e., the stock market capitalization

of stock 1 as a fraction of the wealth share of investors actively participating in the stock. An

implication is that when m̃1,t approaches zero, the idiosyncratic risk becomes diversifiable,

and there is no compensation for bearing that risk (the first term on the right-hand side of

(37) disappears).

Remark 3 Since the equations determining κ1,t and yt are essentially the same as (21)

and (20), Proposition 4 remains unchanged when there are multiple stocks, except that now

condition (b) becomes (m̃1,tσ1,t)
2 < 1

4
(1−y)2|h′(y)|. This condition therefore does not require

that the total volatility of stock 1, or even its idiosyncratic part σ1,t, be small, but rather that

the risk of stock 1 be diversifiable by the agents trading it (small m̃1,t).

5.2 A limiting economy with a small and a large stock

The CAPM-style formulae provide equilibrium expected returns conditional on the equilib-

rium covariance matrix and the investor wealth shares. To fully solve the model, we consider

a limiting two-stock economy in which trees of type 1 are small compared to trees of type 2

and also the fraction of investors that pay attention to trees of type 1 is small. Since this

section involves some detailed modeling assumptions, we relegate the full presentation to

Appendix C. In the text we simply summarize the setup and the main findings.

23. Recall that the Sharpe ratio in Proposition 5 pertains to a portfolio that invests one dollar in asset 1
and shorts bt units of asset 2, hedging out the exposure of the portfolio to the second Brownian shock.
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Specifically, assume that there are two types of trees, namely “small” trees (type-1 trees)

and “large” trees (type-2 trees). Type-2 trees have dividends similar to the baseline model,

namely D2,t,s = ϕ2δ2D2,te
−δ2(t−s), where ϕ2 > 0, δ2 > 0, and D2,t follows a geometric Brown-

ian motion, dD2,t

D2,t
= µ2,Ddt+ σ2,DdB2,t, with drift µ2,D > 0. Type-1 trees produce dividends

D1,t,s = ϕ1δ1D2,se
−δ1(t−s)+σ1,D(B1,t−B1,s), with ϕ1 > 0 and δ1 > 0. With the above dividend

specifications, the dividend ratio D1,t

D2,t
is stationary and given by

D1,t

D2,t

=

∫ t
−∞D1,t,sds∫ t
−∞D2,t,sds

=
ϕ1

ϕ2

∫ t

−∞

D2,s

D2,t

δ1e
−δ1(t−s)+σ1,D(B1,t−B1,s)ds. (39)

When type-1 trees are small compared to type-2 trees
(
ϕ1
ϕ2

≈ 0
)
, aggregate consumption,

D1,t+D2,t, is approximately equal to the aggregate dividends of the large, type-2 trees, and

therefore aggregate consumption follows a geometric Brownian motion. The implication is

that the interest rate and the risk premium for type-2 trees both converge to constants as

the ratio ϕ1
ϕ2

→ 0 goes to zero.

In the baseline model, entry and exit of investors into the single stock market was tied

to the arrival and departure of agents in the economy and was essentially exogenous. The

extension to two risky stocks requires that we model the entry and exit into the market for

stock 1. Specifically, we assume that investors of both types (R and I) gain and lose interest

in stock 1 at the rate χ per unit of time dt. Of the arriving investors a fraction ν is of type

R, as in the baseline model. In addition, investors may choose to exit because they incur

a small, non-pecuniary, disutility flow, ε, from paying attention to stock 1. Specifically, an

investor of type i ∈ (I, R) chooses to keep paying attention to stock 1 if and only if her

expected discounted utility from remaining attentive to stock 1 is above the present value of

the disutility cost of attention, ε.

Assuming that ε is sufficiently close to zero, it is irrelevant for investors of type I: these

investors’ perceived benefit from being able to invest in stock 1 is bounded away from zero.

For investors of type R, however, there are regions of ωt where the optimal holding of stock

1 is zero, and even a small disutility can lead them to exit the market.

Formally, the net value that an investor of type R derives from being in the the market
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for stock 1 equals

V R(ωt) ≡ Et

[
max
wu,T

∫ T

t

e−ρ(u−t)
(
wu (µ1,u − ru + λu(wu))−

1

2
(wuσ1,u)

2 − ε

)
du

]
, (40)

where T ≥ t is the stochastic time of exit from the market for stock 1 (be it endogenous or

exogenous). Equation (40) uses the assumption of logarithmic preferences — along with the

simplifying assumption that stocks 1 and 2 are independent — to express the net expected

utility gain from continued presence in market 1 as the increase in investor R’s logarithmic

growth rate of wealth, wR1,u
(
µu − ru + λRu

)
−1

2

(
wR1,uσu

)2
, net of the flow disutility ε of presence

in the market. The investor strictly prefers to remain in the market if and only if V R(ωt) > 0.

This requirement implies that, for given equilibrium functions κ(ωt) and y(ωt), there is a

critical boundary ω̄, typically lying in the region of ωt where w
R
1,u(ωt) = 0, that acts as a

“reflecting barrier” for ωt. Specifically, if the process ωt were to ever exceed ω̄, there would

be enough exit to restore ωt to ω̄.
24

Some further technical assumptions on investor entry and exit are detailed in Appendix

C. In that appendix (Proposition 6) we also show that ωt is a Markov diffusion (reflected at

ω̄). The price-dividend ratio of stock 1 is a function of ωt, and can be obtained as the solution

of a non-linear ordinary differential equation (ODE), which has to be solved numerically. In

the remainder of this section we discuss the (numerical) solution of this ODE.

Figure 4 presents the solution for the price-dividend ratio. We are interested in situations

where the disagreement is large (η = 0.9), and the speed of investor churn in market 1 is

quite large (χ = 2), to capture short-termism. The idiosyncratic dividend volatility is not

too large, σ1,D = 7%, and the shorting fee is at the high levels that one encounters for stocks

that are “on special” (φ = 5.7%). A proportion ν = 0.7 of new investors are of type R. In

equilibrium, this value of ν ensures that the endogenous exit decision is meaningful, that is,

under any equilibrium there would a possibility that ωt “spends time” in a region where a

zero holding of asset 1 is optimal for investor R. Finally, we assume that the sum of interest

rate and depreciation for stock 1, r + δ1, is 0.1. We choose a value of τ = 0.8 based on the

industry practice of rebating about 80% to the mutual funds that provide their shares for

24. This behavior is reminiscent of models of industry equilibrium with endogenous entry and exit (e.g.,
Leahy (1993), Baldursson and Karatzas (1996).)
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Figure 4: The price-dividend ratio in the equilibria involving the highest and the lowest
(zero) extent of shorting.

lending.25 Finally, for the disutility ε we intentionally choose a very small amount (2.5 basis

points on an annual basis).

Figure 4 shows the price-dividend ratio under two different assumptions on the equilib-

rium that investors coordinate on (when multiple equilibria are possible). Specifically, the

line “zero shorting” assumes that investors always coordinate on the equilibrium with zero

shorting, if it exists. By contrast, the line “high shorting” assumes that investors always co-

ordinate on the equilibrium with the highest possible shorting. Note that both lines extend

only until the levels ω̄1 and ω̄2, respectively, which are the levels of ωt at which R investors

exit in the two equilibrium with zero and high shorting, respectively.

There are several noteworthy features of Figure 4. First, the price-dividend ratio for

the zero shorting equilibrium is higher than the price-dividend ratio for the high shorting

equilibrium. This may seem counter intuitive, since the high shorting equilibrium implies a

lower Sharpe ratio for a fixed ωt. The reason why the price-dividend ratio is higher in the

zero shorting equilibrium is that the dynamics of the wealth shares of I and R investors differ

depending on whether the economy coordinates on the high or zero shorting equilibrium.

We already showed in Section 3 that, when the economy coordinates on the high shorting

25. Source: “Unlocking the potential of your portfolios: iShares Security Lending.” Blackrock, 2021.
Available at https://www.ishares.com.
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equilibrium, the wealth dynamics favor R investors. As a result, their stationary wealth

shares are higher, which in turn tends to raise the stationary Sharpe ratio.

Participation costs accelerate these wealth dynamics: To see this, suppose that the market

coordinates on the high shorting equilibrium and that ωt > ω1. If a coordination shock

shifts the economy to the zero shorting equilibrium, short sellers exit instantaneously until

ωt+ = ω1, where ωt+ is the value of ωt after the equilibrium shift. At the new value ωt+ = ω1,

the shorting market is still inactive (ω1 > ω∗
1) and the remaining short sellers pay the

(flow) participation cost despite holding a zero position in stock 1. However, the exit of a

sufficient number of short sellers has increased the probability that future values of ωt will

be sufficiently low to activate the shorting market again. (Recall that for sufficiently low

values of ωt, the equilibrium is unique and involves shorting.) This increased probability of

an active shorting market incentivizes the R investors to keep paying the participation cost.

In terms of quantities, Figure 4 implies that an unanticipated shift in equilibrium (from

the “high shorting” to the “zero shorting”) will make the price-dividend ratio jump upward

by about 10%. As we discuss in Section 6.4, this value is similar in magnitude to the monthly

return on a broad “betting against the shorts” strategy during the period covering November

2020 to January 2021, a time when short sellers abandoned their positions abruptly.

6 Empirical Evidence

6.1 Overview

The novel intuition of our model is the presence of a feedback effect between utilization (y)

and the Sharpe ratio (κ). This feedback loop can lead to equilibrium shifts that empirically

manifest themselves as a jump in utilization, irrespective of how agents coordinate on one

equilibrium or another (Remark 2). Moreover, Proposition 4 derived a key condition for the

possibility of such jumps to occur, namely that the function h(y) = f(y)(1 − τy), which

reflects the difference between the fee paid by the short investor and the income received by

the long investor, be declining for some y.

The next section shows that the assumption of a declining h(y) over some range of y is
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empirically plausible. In addition, we present evidence that the time series for utilization does

exhibit jump-like behavior. Moreover, the incidence of utilization jumps for a given stock

is significantly correlated with whether the estimated h(y) (for that stock) has a declining

segment.

6.2 Data description

Daily returns and market capitalization data are from the Center for Research in Security

Prices (CRSP). Our source for stock lending fees and short interest is IHS Markit. These

data start in January 2006.26 Markit collects self-reported data on actual rates on security

loans from active participants in the securities lending market. The data set covers roughly

30,000 securities, and contains 16 million unique stock-day observations.

We match the Markit data to the CRSP database and retain only common stocks of

domestic companies. Furthermore, to ensure that our results are not driven by micro-cap

stocks, for our main empirical results we only retain observations that correspond to stocks

that are Russell 3000 constituents (on the day of observation), which we identify using the

Datastream Monthly Index Constituents file. This reduces our number of observations to 10

million.

We follow Daniel, Klos, and Rottke (2018) and use the quantity “Indicative Fee” as our

measure of the marginal cost of borrowing, which is the expected borrowing cost (expressed

in percentage points per year) on a given day.27 In addition to these data on fees, we use

two additional data variables from Markit: a) “Daily Cost of Borrow Score” (DCBS) and b)

daily utilization. The DCBS takes integer values between one and ten and is a “bucketed

score (1-10) that reflects the cost to borrow the stock charged by the lenders from the Prime

26. The Markit data of other studies (Daniel, Klos, and Rottke (2018) and Drechsler and Drechsler (2014a))
starts in 2004 and contains observations at a weekly frequency. The data set that was provided to us by
Markit contains daily observations that start in 2006. Markit confirmed in an email that the pre-2006 data
are no longer available.
27. Markit uses both borrowing costs between Lenders and Prime Brokers to produce this estimate of the

current market rate. As discussed in Daniel, Klos, and Rottke (2018), the Indicative Fee can be interpreted
as a proxy for the marginal cost of short selling. Markit also reports the “Simple Average Fee”, which is
the average fee over all outstanding contracts for a particular security. Following Daniel, Klos, and Rottke
(2018), on each-stock day, we take the Indicative Fee as our measure of the stock’s lending fee and (in the very
rare instances) where the Indicative Fee is not reported, we use the Simple Average Fee. This substitution
applies to only 676 observations out of the roughly 10 million observations.

30



Brokers in the wholesale market, where 1 reflects a cheap or a GC (“general collateral”) stock

and 10 reflects an expensive or a special stock.”28 The literature has used this score as a way

of identifying stocks that are on special. In the data, DCBS values equal to one are by far the

most prevalent ones (74% of our sample) and tend to exhibit a high degree of persistence.29

For some of our empirical results, we focus on stocks that are hard to borrow and we drop

observations with DCBS equal to 1, since our model applies predominantly to stocks where

lending frictions are non-trivial. Markit’s “Utilization by Quantity” is computed as the

fraction of assets on loan from lenders divided by the total lendable quantity. This variable

takes values between 0 and 1 and corresponds to the variable yt in our model.

6.3 Figures and tables

Tables E.1 and E.2 in Appendix E provide some summary statistics on the lending fees. To

expedite the presentation of the results that pertain to our paper, here we simply summarize

our main findings from these tables as follows: When we sort stocks into five quintiles by

market capitalization the median lending fee ranges between 0.35% per annum (for stocks

in the large market capitalization quintile) to 0.41% per annum (for the lowest market

capitalization quintile). However, lending fees exhibit substantial cross-sectional and time-

series variation. The 99th percentile of all lending-fee observations exceeds 7% for stocks in

four out of the five market-capitalization quintiles. When we examine lending fees at the

individual stock level, we find that 31% of Russel 3000 constituents exhibit a lending fee in

excess of one percent for 5 out of 100 trading days, while 18% of Russel constituents exhibit

lending fees in excess of 3% for 5 out out of 100 trading days. In addition, 45% of Russel

constituents exhibit a fee in excess of 5% at some point in the sample. This is consistent

with results reported in Engelberg, Reed, and Ringgenberg (2018), who write “loan fees can

increase to levels that significantly decrease the profitability of nearly any trade.”

We start the presentation of our main empirical findings with Figure 5, which examines

the relationship between utilization and shorting fees. Specifically, the solid line pools all

28. IHS Markit Securities Finance Quant Summary, July 2020 edition. Available on WRDS.
29. If a stock has a DCBS value of one on any given day, the probability that it has a DCBS value of one

the next day is 98.83%
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Figure 5: Relationship between shorting fees and utilization. Non-parametric series regres-
sion of daily shorting fees on utilization, pooled across Russell 3000 constituents. Daily
shorting fees from 2006 to 2021 are from Markit and are reported as annualized percentage
rates. (For instance, 0.05 on the y axis means 5% per annum.) Error bars denote 95%
confidence intervals. Because this estimation utilizes several millions of observations, the
standard errors of the estimates are negligible.

daily observations across all Russel-3000 stocks and depicts the estimates of a non-parametric

regression of daily shorting fees (expressed in annual percentage terms) on utilization.30 The

dashed line depicts results from the subsample that only includes observations of stocks with

a DCBS code of 2 or above, stocks that we refer to as being on special. As both plots

show, the relationship between shorting fees and utilization is non-linear, with a region

that is approximately constant for low and intermediate values of utilization and a steeply

increasing region for high values of utilization.

We next use the estimates from the previous non-parametric regression analysis to com-

pute estimates of h′(y). Specifically, using the non-parametric point estimates and corre-

sponding standard errors for f(y) and f ′(y), and the formula h′(y) = f ′(y) (1− τ y)−f(y)τ ,
we calculate h′(y). We present the estimated h′(y) in Figure 6, along with an upper-bound

30. We estimate a third order basis spline of fees on utilization and depict the point estimates and standard
errors at 0.05 increments of utilization, along with standard errors. For the computations we use the command
(npregress series) in Stata. Standard errors are produced using the command margins and the ∆-method.
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Figure 6: h′(y), pooled non parametric estimates. Estimated marginal effects are derived
from a non-parametric series regression of daily shorting fees f on utilization, y. Marginal
effects are computed using the formula h′(y) = f ′(y) (1− τ y)−τf(y). Short interest is based
on utilization data from Markit. Sample consists of daily observations of shorting fees and
utilization, pooled across Russell 3000 constituents from Markit for the period 2006 to 2021.
Standard errors are derived from the standard-error estimates of (1 − τy)f̂ ′(y) and τ f̂(y),
while assuming a worst-case correlation of −1 between these two quantities. The value τ is
set to 0.8.

estimate of the 95% confidence interval.31 The figure shows that h′(y) is statistically signif-

icantly negative for several points between 0 and 0.4. Therefore, when we pool all observa-

tions, we can statistically reject the null hypothesis that h′(y) is always positive.

The two plots of Figure 6 pool all observations together and estimate a single non-

parametric regression to obtain more precise estimates. As a robustness check, in Appendix E

we estimate a separate non-parametric regression between fees and utilization for each stock

and compute a stock-specific h′(y). Appendix E shows that the (cross-sectional) average of

the estimated h′(y) is negative (and statistically significant) for low values of y.32

Our next set of results pertains to the implications rather than the assumptions of our

model. One empirical implication of the model is that utilization follows a jump-diffusion

process. When there is no equilibrium change, utilization follows a diffusion process. An

31. The standard errors are computed using Stata’s estimates for the variance of the estimates f(y) and

f ′(y) and a worst-case assumption that the correlation between the estimates of f̂ and f̂ ′ is -1 to provide an
upper bound on the variance of the estimate.
32. As can be expected, the estimation of a separate function h′(y) for each stock increases the estimation-

error bounds on h′(y) and therefore the range of (statistically significant) negative y-values becomes smaller
than in Figure 6.
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(a) Utilization (b) Lending fee

Figure 7: QQ-plots of weekly changes in utilization and lending fees. Left panel: An AR1
of utilization is estimated at the stock level at a weekly frequency. The residuals of each
time series are divided by their standard deviation and then pooled across all stocks. The
quantiles of the standardized-residual distribution are then plotted against the quantiles of
the standard normal distribution. Right panel: Same as the left panel, but for lending fees
rather than utilization. Both utilization and lending fee data from Markit over the period
2006 to 2021.

occasional equilibrium shift causes an (upward or downward) jump in utilization.

Figure 7 provides an informal way to visualize abrupt shifts in utilization in the data. For

each Russell 3000 stock, we estimate a separate AR1 process for weekly utilization, so that

both the long-run mean and the persistence of utilization can vary at the stock level. We

then normalize the innovations (i.e., the residuals of the AR1 estimation) by their standard

deviation. Assuming that utilization (at the stock level) follows an AR1 process with normal,

homoskedastic increments, one would expect these normalized residuals to follow a standard

normal distribution. The left panel of Figure 7 shows that this is not the case. The quantile-

quantile plot of the standardized residuals clearly shows that the innovations to utilization

exhibit remarkably fat tails with a non-trivial mass of the residuals in the range of 10-20

standard deviations. The kurtosis of these residuals is 78 as opposed to 3 for a standard

normal.33,34 We note that utilization is not the only fat-tailed time series. The right subplot

of Figure 7 shows that weekly changes in the lending fee are also quite fat-tailed.

33. The Jarque-Bera test rejects normality with a p-value essentially equal to zero.
34. The test proposed by Aı̈t-Sahalia and Jacod (2009), which tests whether the discretely observed uti-

lization data emanated from a continuous-sample-path diffusion process using daily data, rejects the null
hypothesis of continuous sample paths for 85% of Russel 3000 constituents.
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Table 1: Regressions of Jump Rate on stock-level estimates of h′ (y)

Annualized Jump rate

|∆y| ≥ 5.5% |∆y| ≥ 8.0% |∆y| ≥ 10.0%

Panel A: Large changes in Shorting Utilization

1h′<0 2.339∗∗∗ 2.269∗∗∗ 2.171∗∗∗

(4.004) (3.823) (3.625)

1Rejecth′>0
1.758∗∗ 1.524∗∗ 1.364∗

(3.087) (2.636) (2.345)

N 2249 2249 2249 2249 2249 2249

Panel B: Large changes in Shorting Utilization driven by changes in Shorting Demand

1h′<0 1.169∗∗∗ 1.152∗∗∗ 1.113∗∗∗

(3.560) (3.461) (3.313)

1Rejecth′>0
0.895∗∗ 0.787∗ 0.703∗

(2.823) (2.437) (2.156)

N 2249 2249 2249 2249 2249 2249

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Jump rate is calculated as annualized rate of detected jumps in utilization. Jumps are
identified as trading weeks during which the absolute change in utilization exceeds, depending
on the specification, 5.5%, 8%, or 10%. h′ is based on the stock-level estimate of h(y) from
a non-parametric kernel regression of h(y) on utilization y. h′ is estimated at 5%, 10%,
20% . . . 90%, and 95% and the stock-level estimate of h′ is the minimum of these estimated
marginal effects. 1h′<0 is an indicator variable taking a value of 1 when the stock-level
estimated minimum-h′ is negative. 1Rejecth′>0

, is an indicator variable taking a value of 1

when the stock-level estimated minimum h′ is sufficiently low to reject the null hypothesis
that h′(y) > 0 for all y, after applying a Bonferroni correction to account for multiple
hypothesis testing.

Turning to the cross section of stocks, Table 1 shows that stocks where h′(y) < 0 for some

y tend to exhibit a larger incidence of unusually big weekly changes in utilization. Specifically,

we perform the following exercise. We fix a cutoff U above which we consider the weekly

AR1 residual in a stock’s utilization as economically large. We refer to a week on which the

absolute value of the change in utilization exceeds U as a jump event. (Results are quite

similar if we consider the raw weekly changes in utilization rather than the AR1 residuals.)

These cutoffs U correspond to unusually large (larger than 2 standard deviations) weekly

changes in utilization. We define the jump rate as the ratio of the number of jump events
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to the total number of weeks over which we observe the stock, which we then annualize for

ease of interpretation. We then regress the obtained stock-level jump rate on two indicator

functions. The first indicator function takes the value 1 for stock j if the estimated function

h′(y) for stock j exhibits at least one negative point estimate.35 The second indicator function

takes the value 1 for stock j if we can statistically reject that h′(y) > 0 for some value of y.

Given our interest in stocks that are on special, we confine attention to Russell 3000 stocks

that have a DCBS score larger than one for at least 50 trading days, yielding a sample of

2249 stocks.

The bottom panel of Table 1 performs a similar exercise to the top panel, except that

in order to define a jump in utilization we impose an additional property of the model:

we confine attention to jumps in utilization, whereby the absolute value of the percentage

change in shorted shares (the numerator of utilization, y) is larger than the absolute value

of the percentage change in lendable shares (the denominator of utilization, y).36 The table

shows that stocks for which h′(y) < 0 exhibit a higher incidence of jump events.

Inside the model, stocks with uniformly positive h′(y) should not exhibit jumps, whereas

stocks with some negative values of h′(y) might. Of course, because of measurement error

in h′(y) our procedure will mis-classify some stocks as not satisfying h′(y) < 0, when in fact

they do, and vice versa. We may also mis-classify jump events. Because of these unavoidable

measurement errors, when we confront the model with the data, we should expect to find

that stocks for which the estimated h′(y) has a negative region have — on average — a

higher incidence of jumps. This is indeed what Table 1 shows.

As a robustness check, in Appendix E (Table E.4) we also discuss a version of Table

1 using a more sophisticated econometric procedure to identify jump events. Specifically,

we use a jump-robust, rolling estimator of volatility to allow us to disentangle jumps from

just unusually volatile periods for each stock. This more sophisticated procedure produces

the same results as the more intuitive approach of defining a jump simply as an unusually

35. For the estimation of h′(y) at the stock level, we use the kernel estimator described in Appendix E.
36. Inside the model, utilization y is equal to the ratio of shorted shares to lendable shares; in turn lendable

shares are equal to one plus the absolute value of shorted shares (this is the market clearing condition).
Therefore, the absolute value of the percentage change in shorted shares must exceed the absolute value of
the percentage change in lendable shares. By restricting attention to jumps that satisfy this requirement, we
prevent that a change in utilization could be driven by —say— some institutional client giving permission
to short shares.
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large change in weekly utilization. Further, as a “sanity check,” Table E.3 in Appendix

E confirms that the incidence of utilization jumps is higher for stocks that are harder to

borrow, consistent with the idea that jumps in utilization occur when shorting frictions are

non-trivial.

An additional robustness check in Appendix E pertains to the estimation of h′(y). In

the model the only shocks are exogenous dividend shocks, which cause shifts in the wealth

distribution, the Sharpe ratio, and the demand for shorting shares. Further, the relation

between the fee and the utilization is deterministic: ft = f(yt). In the data, there is a

residual εt in that relation, ft = f(yt)+ εt, which throughout this section we have treated as

(orthogonal) measurement error in the lending fee. However, if one were to think of this εt

as a non-orthogonal supply shock, the empirical estimates of f ′(y) could be biased upwards

or downwards. The model offers a relatively simple approach to consistently estimate ∆ft
∆yt

even in the presence of shocks to the lending fee. The idea is to exploit the discontinuities

that occur around equilibrium shifts:37 Assuming that dividend shocks and the shock to the

lending fee, εt are continuous processes, jumps in yt can only be the result of an equilibrium

shift. Thus, if we assume that the residual process εt is continuous, jumps in yt offer an

opportunity to measure ∆ft
∆yt

=
ft+−ft−
yt+−yt−

=
f(yt+ )−f(yt− )+εt+−εt−

yt+−yt−
≈ f ′(yt−), where we used the

continuity assumption εt+ = εt− . In other words, around jump-events in utilization, one is

able to identify f ′(yt). Figure E.1 in the appendix estimates ∆ft
∆yt

by evaluating changes in

the numerator and denominator on the weeks where yt exhibits jump events, as identified

earlier. The figure shows that the derived function h′(y) is small and negative for all values

of y. This suggests that our conclusion h′(y) < 0 for some y is not the result of a bias due

to endogeneity issues.

6.4 The retreat of short sellers between November 2020 and Jan-

uary 2021: A case study

Our theory provides a useful lens for interpreting the dramatic events that occurred in the

shorting market over the three-month period covering November 2020 to January 2021. We

37. The idea is reminiscent of how Sweeting (2006) uses multiple equilibria to resolve identification issues.
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start by documenting the historically dismal performance of shorting strategies over this

period and the contemporaneous correlated drop in short interest across a large number

of stocks. While the press focused attention on a single stock (namely GameStop), which

experienced a coordinated short squeeze fueled by retail investors in January 2021, we show

that the retreat of short sellers preceded the short squeeze on Gamestop by about two

months, was quite broad, and occurred among stocks that neither experienced a significant

change in retail trading volume, nor were the topic of intense online discussion (as was the

case with GameStop). We conclude, therefore, that the very poor performance of shorting

strategies was the result of an abrupt shift in the behavior of short sellers, rather than the

result of coordinated short squeezes by retail investors, or the result of contagion from their

losses in meme stocks.

To start, in Figure 8 we plot the cumulative returns to an equal-weighted portfolio that

bets against the shorts. The portfolio is long the top decile of Russell 3000 stocks, ranked by

short interest, and short the broad market. To construct this portfolio’s return, we use stock

return data are from CRSP and short interest data from the SEC. (Since in this section we

are interested in historical comparisons, we use data on short interest from the SEC, which

starts in 1973, but is available only at a monthly frequency for the full sample.38,39) The

figure shows that the betting-against-the-shorts strategy is not particularly profitable (or

unprofitable) from late June to mid-November 2020, but becomes strikingly profitable over

the following three months.

To put this evidence in historical perspective, in the left panel of Figure 9 we plot a

histogram of the monthly returns of this betting-against-the-shorts strategy since the be-

ginning of the sample (1973). The left panel of Figure 9 shows that the November 2020

and January 2021 returns are the highest and second-highest (respectively) in the historical

sample. (December 2020 is also in the top decile of the historically observed returns.) Figure

G.1 in Appendix G further shows that November 2020 and January 2021 remain outliers if

we exclude tickers that were heavily discussed online (on the WallStreetBets subreddit40), if

38. For additional details on the construction of this portfolio, see Appendix E.
39. SEC data on short interest are available every two weeks since January 2007, but not before.
40. The popular stocks on the WSB subreddit in January 2021 were: AMC, BBBY, GME, SPCE, TLRY,

and TSLA.
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Figure 8: Cumulative Returns (July 2020 – February 2021). Cumulative returns on a strategy
long the top decile of stocks by short interest and short the broad market. The cumulative
returns to an equal-weighted long-short portfolio are shown by the solid black line. The
returns to the same portfolio, but excluding the six most-discussed tickers on the Wallstreet-
Bets subreddit (AMC, BBBY, GME, SPCE, TLRY, and TSLA), are shown in the dashed
black line.

we only include S&P500 constituents (i.e., larger stocks) in the formation of the long leg of

the portfolio, and if we value-weight rather than equal-weight returns.41

In the right panel of Figure 9, we plot the histogram of monthly innovations in short

interest for highly shorted stocks. For each stock, we estimate a separate AR1 model for short

interest using monthly data from January 1973 to October 2020.42 We then extract residuals

for the full sample ending in mid-February 2021 and standardize each stock’s residuals by

their standard deviation. Then for each month we identify the top decile of stocks in the

Russell 3000 by short interest, and compute the (cross-sectional) average of the standardized

residuals of these stocks for that month. As can be seen in the histogram, the three months

beginning in the middle of November 2020 and extending through the middle of February

2021 saw unusually negative realizations of short interest. January 2021 was the second-

most negative realization in the sample, while November was the sixth most negative in the

41. Table G.1 in Appendix G presents the results of formal statistical tests (also controlling for Fama-
French factors) of whether the returns in November 2020, December 2020, and January 2021 are statistically
different from the average return on the betting-against-the-shorts strategy over the full 48-year sample.
42. While data on short interest is available on a bimonthly frequency (i.e., every two weeks) from the

SEC starting in January 2007, we use monthly data to include as long a sample as possible and keep results
comparable across the sample. The SEC data reports short interest in stocks as of the middle of each
calendar month.
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Figure 9: Left panel: Histogram of monthly returns (1973–2021). Equal-weighted, monthly
returns on a portfolio long stocks in the top decile of short interest and short the market
index. The arrows indicate the portfolio returns in the months of November and December
2020 and January 2021. Right panel: Histogram of monthly innovations in short interest
(1973–2021). We estimate a separate AR1 process for short interest stock-by-stock, extract
the residuals, and divide them by their (stock-specific) standard deviation. For each month,
we compute the cross-sectional mean of standardized residuals for the top decile of Russell
3000 stocks sorted on short interest, and depict the data as a histogram. Short interest is as
of the middle of each month and the arrows indicate mid-month to mid-month short-interest
innovations for the period between November 15, 2020 and February 15, 2021.

sample.43 Much like the abnormal returns to betting-against-the-shorts, the decline in short

interest began prior to the meme stock events of January 2021.

The bad returns to short selling are not ripple effects of the short squeeze on GameStop,

which attracted a lot of attention in the press: November 2020 was already the historically

best return for the betting against the shorts strategy recorded up until that point, even

though the online discussion surrounding GameStop did not start until mid-January 2020.

To illustrate this point, in Figure G.2 (Appendix G), we plot the daily submissions to the

WSB subreddit (which was the online forum where users posted their opinions on Gamestop

and other meme stocks) on a logarithmic scale. The graph shows that the explosive growth

of online submissions occurred in early January 2021; November 2020 does not stand out.

In the case of GameStop, the online discussion was highly correlated with retail trading

volume. In Figure G.3 in the Appendix we plot online mentions of Gamestop on the WSB

subreddit against retail trading volume, which we measure in TAQ data with the method-

43. The most negative realization occurred during the Great Financial Crisis.
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ology of Boehmer et al. (2020).44 Both time-series are at an hourly frequency and exhibit

strikingly strong comovement (0.93 rank correlation).

While for GameStop there is a clear spike in retail purchase volume, a remarkable feature

of the data is that short sellers retreated across a wide range of stocks even though these

stocks did not experience any unusual patterns in retail trading volume. Figure 10 plots the

univariate distributions and the scatterplot of (a) changes in short interest and (b) retail

purchase volume as a fraction of total volume for the most shorted stocks (top decile of

stocks) ranked by short interest as of January 15, 2021. The two quantities (a) and (b)

are reported as standardized z-scores using TAQ and SEC data from January 2015 through

January 2021 to compute means and standard deviations. The distribution of the retail-

purchase volume to total volume is centered around zero, with most values in a [-2, 2] range.

By contrast, the distribution of changes in short interest is overwhelmingly negative, with

most values in the [-5 0] range. This indicates that January 2021 was not an unusual month

for the ratio of retail-purchase to total volume for these highly shorted stocks. This is in

sharp contrast to the behavior of short interest, which saw a large decline across most of

the stocks in that month. In addition the relation between the two quantities is flat, as the

scatter plot in Figure 10 illustrates.

To interpret the events through the lens of theory, the fact that short sellers retreated

before the events surrounding GameStop precludes the possibility that their retreat was a

balance-sheet style contagion in reaction to losses they suffered in GameStop.45 The fact

that retail purchase volume did not change for the large number of stocks that saw declines

in short interest suggests that there was no dramatic inflow of optimistic investors in these

markets, as was the case for GameStop. We therefore favor the interpretation that short

sellers retreated because of fears that led them to abandon their strategies in run-type fashion.

One possibility is that some early signs of shifts in retail purchase volume for a few stocks

may have acted as a coordination shock that led to a shift in equilibrium, resulting in a

drop of short interest, a decline in the participation of short sellers, and a higher price for

the previously shorted stocks — consistent with the empirical patterns of that period. We

44. Appendix F contains details on (a) how we identify online mentions, and (b) how we identify retail
trading.
45. See, e.g., Kyle and Xiong (2001).
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Figure 10: Retail purchase volume (as a fraction of total volume) and change in short
interest, January 2021. Both quantities are reported as standardized z scores using TAQ
and SEC data (respectively) from January 2015 through January 2021 to compute means
and standard deviations. Panel (a) plots the empirical cumulative distribution of the two
quantities, alongside a standard normal for reference. Panel (b) plots their joint distribution,
along with the line of best fit. Tickers that were popular discussion topics on WSB and that
are also in the top decile of short interest are indicated with “♢”, while all other tickers are
indicated with “+”.

should also note that the seemingly simpler explanation of interpreting the broad declines

in short interest as a correlated increase in irrationality (η) across stocks, but assuming a

unique equilibrium, would run into the problem that dyt
dη

is positive rather than negative.46

Increased irrationality would therefore lead to a higher level of short interest.

A concluding empirical observation is that the decline in short interest did not show any

signs of reverting to its old levels in the six months that followed January 2021 (Figure G.4

in Appendix G). This suggests that the short-seller retreat was not just a transient reaction

to let the “dust settle.”

7 Conclusion

Shorting can exhibit run-type patterns. An event that prompts some short sellers to abandon

their short positions can ignite a self-propagating cycle: Less shorting also implies less lending

income for investors with long positions, who now need to be compensated with a higher

46. See the proof of Lemma 2.
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expected return, which in turn further prompts short sellers to abandon their strategies.

Thus, for the same fundamentals there can be multiple equilibria — differently phrased, the

self-reinforcing nature of shorting decisions gives rise to a backward-bending demand for the

asset.

Our model also provides a rationale for the simultaneous occurrence of declining short

interest and rising stock prices, a phenomenon we document in our empirical analysis. At

first sight, it would appear that a rise in the stock price (absent a change in fundamentals

or lending fees) should attract rather than repel short sellers. We show, however, that

when investors coordinate on a no-shorting equilibrium the incentive for likely shorters to

participate in the market becomes low enough to prompt them to “abandon” the asset to

the optimists.

We further identify a general condition on the relation between fees and utilization that

is necessary for the existence of multiple equilibria, and confirm empirically that stocks that

satisfy this condition are more likely to experience jump-like behavior in utilization. Finally,

we argue that the retreat of the short sellers and the dismal performance of shorting strategies

between November 2020 and January 2021 may have occurred as a result of self-propagating

fears among short sellers that led them to abandon the market to the optimists, in line with

our theoretical results.
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For Online Publication – Appendix

A The Determination of the Lending Fee

In the text we assume a “flat” supply curve for lending shares. That is, we assume ft =
f(yt) = φ. We provide here the simplest model that supports this assumption. We also
discuss how to extend the model to allow for an increasing f(·).

All interactions considered in this section happen anew every period, where the length of
the period is idealized to be “dt,” that is, infinitesimal. (We could formalize this assumption
by considering a discrete-time model where the length ∆ of a period is taken to go to zero,
and focusing on the limit of resultant equilibria.)

We start by considering the long investors, who wish to lend their shares. Each investor
lends all her shares to any one of a competitive fringe of profit-maximizing “security lenders”
in exchange for an income stream that is proportional to the dollar value of shares the
investor lends. This income stream is determined as follows. In equilibrium, each security
lender lends a proportion yt of the shares it borrows from investors and receives a fee fl per
dollar of shares it lends out. (We omit time subscripts from now on.) Competition between
the security lenders drives the income stream paid to long investors to yfl per dollar of stock
owned by the investors.47

At the other end of the lending transaction, desirous short sellers interact with a com-
petitive set of “borrower’s brokers.” Specifically, for every borrowing fee fb the would-be
short sellers provide the dollar amount that they would like to short, and the brokers take
the value fb as a given when they attempt to fill the investors’ borrowing orders.

All of the frictions in this model pertain to the interaction between security lenders and
borrower’s brokers. Specifically, to initiate a stock loan the representative broker must pay
a cost ξ per dollar value of share “located” with a security lender, per unit of time. This
cost is construed as labor cost that compensates brokers for their disutility of labor.

The interaction between the broker and the security lender takes the form of bilateral
Nash bargaining in which the broker has bargaining power 1/(1 + z) for a parameter z ∈
(0,∞). Given our assumption that all interactions (between investors and brokers or security
lenders and between brokers and security lenders) happen anew every period, the outside
option for both brokers and security lenders is the failure to transact during the period. This
means that the gains from trade to the security lender equal the lending fee fl, while to the
broker the borrowing fee net of the lending one fb− fl — the searching and matching cost ξ
has been sunk at this point. The total gains from trade equal fb, the foregone revenue from
the would-be short seller. Given the bargaining protocol, it follows that

fl =
z

1 + z
(fl + fb − fl) =

z

1 + z
fb. (A.1)

47. In that sense, the security lenders resemble the “insurance companies” in Blanchard (1985). Similar
to how insurance companies collect payments from the fraction of agents who die and rebate them to the
surviving population, the security lenders collect lending fees from the proportion of a long portfolio that
gets loaned out and rebate it in the form of an income stream to the representative long investor.
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Brokers break even on net, meaning that

fb = fl + ξ, (A.2)

so that

fl = zξ, (A.3)

fb = (1 + z)ξ. (A.4)

To keep the model transparent and tractable, assume that all brokers are members of
the representative household, and therefore the fees that compensate them for their effort
are rebated to each households as an income stream proportional to the household’s wealth
and independent of the composition of the household’s portfolio.

Setting φ = (1 + z)ξ and τ = z/(1 + z), this extended model is equivalent to the model
we assumed in the text. To generalize to upward-sloping supply curves, one would simply
assume an increasing cost ξ(y).

B Multiple Agent Types

We illustrate here that the multiplicity of equilibria may expand with the number of agent
types. In particular, adding a third group of agents can result in a third equilibrium featuring
non-zero shorting; such a model may admit, in fact, up to five equilibria.

Specifically, let us assume a third group of investors characterized by beliefs that are
summarized by the quantity ηP . We think of these investors as pessimists, which implies
ηP < 0. The intuition we wish to capture is that, in addition to the “high-shorting” and
“medium-shorting” equilibria in the base-line model, low-shorting equilibria may exist in
which investor R is inactive, while investor P shorts actively.

To make the point theoretically, one may argue by continuity. Specifically, consider the
zero-shorting equilibrium in the baseline model, and perturb the setting by adding a small
mass of sufficiently pessimistic investors (|ηP | large enough). These investors will want to
short, but will not be sufficiently numerous to move the Sharpe ratio or lending income to a
point where investors R and I are no longer in equilibrium.

It is helpful to write down the equilibrium conditions in the augmented model — both
to allow for a formal argument and in the interest of a numerical illustration. We repeat
the analysis in the text — letting ωP denote the wealth share of agents P — to obtain the
market clearing condition

1 =
1

σD

[
ωP

(
κ+ ηP +

φ

σD

)
1{

κ+ηP+ φ
σD

<0
} + ωR

(
κ+

φ

σD

)
1{

κ+ φ
σD

<0
}+ (B.1)

ωI
(
κ+ ηI +

φ

σD
τy

)]
,

where the left-hand side is the proportion of aggregate wealth represented by the supply of
the stock, while the right-hand side equals the proportion of aggregate wealth invested in
the stock. We restricted attention to cases in which R agents do not take a long position in
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the stock.
We solve for the Sharpe ratio κ:

κ = σD −
(
ωPηP + ωIηI

)
− φ

σD

(
ωP + ωR + ωIτy

)
(B.2)

if κ+ φ/σD < 0, respectively

κ =
σD

ωP + ωI
− ωPηP + ωIηI

ωP + ωI
− φ

σD

ωP + ωIτy

ωP + ωI
(B.3)

if κ+ φ/σD ≥ 0 > κ+ ηP + φ/σD.
The other equilibrium condition concerns the determination of the value of y:

y = −
ωP

(
κ+ ηP + φ

σD

)
1{

κ+ηP+ φ
σD

<0
} + ωR

(
κ+ φ

σD

)
1{

κ+ φ
σD

<0
}

ωI
(
κ+ ηI + φ

σD
τy

) . (B.4)

Depending on whether κ is determined according to (B.2) or (B.3) we obtain a different
quadratic equation. For appropriate parameter choices all but one combinations are possible
in terms of how many solutions in the interval (0, 1) each of them admits. We are particularly
interested in situations in which (B.2) applies and results in two admissible solutions, in
addition to which at least one solution obtains when (B.3) applies.

We illustrate such outcomes in Figure B.1. The two panels differ in terms of parameters,
but depict the same objects. Specifically, the x-axis records candidate values of y that agents
anticipate. Agents form demands taking such a value y and a Sharpe ratio κ as given, and
clearing in the asset market determines the Sharpe ratio. With the Sharpe ratio now specified
for each candidate y, we can compute the actual resulting y — the value of the right-hand
side of equation (B.4). This quantity is recorded on the y-axis. An equilibrium requires that
the x and y coordinates are equal.

The line “R and P short” plots y as if both R and P shorted, that is, their portfolio
weights are calculated by adding the return φ to their perceived intrinsic expected return
from the asset; in that case, the Sharpe ratio is given by (B.2). The line “Only P shorts”
is produced similarly, except that the demand of agent R is set to zero; equation (B.3)
applies. The actual resulting y is depicted by the thick continuous line, labeled “Actual
response.” Finally, the line “Diagonal” depicts the equilibrium condition. Equilibria are
therefore represented by points of intersection between the two continuous lines. The left
panel presents a situation in which four equilibria with positive amounts of shorting and one
with zero shorting obtain. The right panel presents a situation with three equilibria, all of
which feature positive y.

We also flesh out the theoretical argument for the existence of a third equilibrium when
ωP is close to zero and two equilibria with y > 0 exist with ωP = 0 — i.e., the baseline
model. By assumption, with ωP = 0 and y = 0 equation (B.3) applies and κ + φ

σD
> 0.
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Figure B.1: The figure plots, in each panel, four lines pertaining to the model extension
developed in this section. Equilibria are characterized by the satisfaction of equation (B.4),
whose right-hand side is represented here by the line “Actual response” and the left-hand
side by the line “Diagonal.” Further details are provided in the text.

Choosing ηP so that κ+ ηP + φ
σD

< 0, we wish to conclude that equations

y = −
ωP

(
κ+ ηP + φ

σD

)
ωI

(
κ+ ηI + φ

σD
τy

) (B.5)

and (B.3) admit a solution that satisfies κ + φ
σD

> 0 even for ωP > 0, at least when it is

small enough. For simplicity, we keep ωI constant as we increase ωP from zero. Plugging
(B.3) in (B.5) we obtain a quadratic that can be written as

y =
ωP

ωI

(
ηI − ηP

)
ωI − φ

σD
ωIτ (1− y)− σD

(ηI − ηP )ωP − φ
σD
ωP τ (1− y) + σD

≡ H(ωP , y). (B.6)

Our choice of ηP is such that the numerator of the second fraction on the right-hand side is
positive at y = 0, which implies ∂H

∂ωP > 0 evaluated at ωP = 0, as well as ∂H
∂y

= 0 at ωP = 0.
We therefore have

dy

dωP
=

(
1− ∂H

∂y

)−1
∂H

∂ωP
> 0, (B.7)

confirming that an equilibrium with positive y exists for small ωP . (The condition κ+ φ
σD

> 0
is satisfied by continuity.)

C The Price-Dividend Ratio of a Small Stock

This section provides the details of the entry-and-exit process for the model of Section 5.2.
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We start with a few definitions. We let −→mt denote the vector of market-capitalization
weights of the two stocks, and mj,t, j ∈ {1, 2}, its entries. Since the analysis of interest
pertains to asset 1, from now on we use W i

t to denote the wealth of all agents of type i that
participate in the market for stock 1; the relevant state variable is ωit ≡ W i

t /(W
R
t +W I

t ),
and to save notation we maintain the convention ωt ≡ ωRt . As stated in the text, ω̂t denotes
the wealth share of the investors who actively participate in the market for stock 1. We
also let ŵ2,t = µ2,t−rt

σ2
2,t

denote the optimal portfolio holding of stock 2 by investors who

don’t participate in stock 1, and −→w i
t is the (row) vector of portfolio holdings of an investor

i ∈ {I, R} that is active in the market for stock 1. Finally,
−→
B t ≡ (B1,t, B2,t)

⊤.
We further define

−→
B t ≡

[
B1,t

B2,t

]
, σt =

[
σ1,t btσ2,t
0 σ2,t

]
, −→φ =

[
φ
0

]
, −→η =

[
η
0

]
. (C.1)

The entry and exit into market 1 happens either for endogenous or exogenous reasons.
By “endogenous” we mean that investors conduct a cost-benefit analysis before deciding
whether to keep paying attention to the market for stock 1. In addition to this optimizing
choice, we assume that investors enter and exit the market for exogenous reasons. This
exogenous flux of investors is modeled with the sole purpose of making the model solution
more tractable and transparent.

Specifically, withW i
t the (aggregate) wealth of type-i investors that participate in market

1, we assume

dW i
t = dW i,part

t +χ
(
νi(W I

t +WR
t )−W i

t

)
dt−1i=R×

W I
t +WR

t

1− ωt
dFt+ω

i
t (dLt − dNt) , (C.2)

where dW i,part
t is the wealth growth of all investors of type i ∈ {I, R) who already participate

in the market for stock 1.48 The term χ
(
νi(W

I
t +WR

t )−W i
t

)
dt reflects entirely exogenous,

non-optimizing entry, which happens at some rate χ.
As in the baseline model, we are assuming that this exogenous entry-and-exit process

affects the composition, but not the sum, of W I
t +WR

t , since∑
i∈{I,R}

χ
(
νi
(
W I
t +WR

t

)
−W i

t

)
= 0.

The term −1i=R × W I
t +W

R
t

1−ωt
dFt captures the endogenous exit of R investors. As we de-

scribed in the text, the (singular) process dFt is constructed so that ωt stays below the
critical value ω̄ of ωt (see (C.3) below) that ensures V R(ωt) > 0 for ωt < ω̄.

Mostly for technical tractability reasons, we assume another source of exogenous entry
and exit, which is reflected in the term ωit (dLt − dNt) on the right-hand side of (C.2).

48. For completeness, dW i,part
t =W i,part

t µi
W dt+W i,part

t (−→w i)⊤σtd
−→
B t where

µi
W = rt + π + nt + (−→w i

t,s)
⊤
(
−→µ t − rt12×1 + λit,s

[
1
0

])
− cit,s
W i

t,s

.
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This entry and exit process leaves the composition of wealth in the market (between R
and I investors) unaffected, but ensures that the wealth of the investors who pay attention
to the market 1 stays proportional to the “size” of market 1. Specifically, we define dLt
and dNt as the two singular, increasing processes that control W I

t +WR
t so that the ratio

of stock market capitalization of asset 1 to the total wealth of investors participating in
market 1, m̃t = M1,t

W I
t +W

R
t
, stays constant across time (m̃t = m̃).49 Because (dLt − dNt) is

multiplied by ωit, this exogenous entry-and-exit process does not impact the composition
of wealth between R and I investors. The purpose of this exogenous entry-and-exit term
is transparency and tractability: By ensuring a constant m̃t, if there were no differences
of opinion (η = 0), the excess return, the price-dividend ratio, and the volatility of stock 1
would all be constant. Thus, we can eliminate a state variable from the problem, namely
the ratio of market capitalization to the total wealth of investors in market 1. Economically,
this means that we can abstract from the effects of limited participation (that have been
studied extensively in the literature) and isolate the impact of shorting frictions. It is also
worth highlighting that the term ωit (dLt − dNt) endogenously approaches zero as δ1 and χ
approach infinity.50 Thus, our computations would be approximately valid if we eliminated
the term ωit (dLt − dNt), as long as the analysis focuses on cases where investors are short-
termist (χ is large) and the ratio of the dividends of a typical tree 1 to tree 2 mean reverts
fast.

Having described the entry and exit of investors into the market for stock 1, we are ready
to state a formal result describing the determination of equilibrium in this economy. For
simplicity, we assume that the Brownian motions B1,t and B2,t are independent.

Proposition 6 Using the expressions for wit, κ1,t (with b = 0), and yt from Proposition 5,
the wealth share ωt follows the diffusion process

dωt = µω(ωt)dt+ σω(ωt)dB1,t − dFt, (C.3)

where Ft is an increasing (singular) process that reflects ωt to remain below the value ω̄ that
is the lowest value for which V R(ωt) = 0, and µω(ωt) and σω(ωt) are given by

µω(ωt) = ωt

((
wR1,t − m̃

)
σ1,t (κt − σ1,tm̃) + wR1,tφ+

ytm̃

1− yt
φ (1− τ)

)
+ (C.4)

χ (ν − ωt) ,

σω(ωt) = ωt
(
wR1,t − m̃

)
σ1,t, (C.5)

where σ1,t =
p′(ωt)
p(ωt)

σω(ωt) + σ1,D is the volatility of stock 1 and the price-dividend ratio pt =

p(ωt) solves the ordinary differential equation

1

2

∂2p

∂ω2
t

(σω(ωt))
2+

∂p

∂ωt
(µω(ωt) + (σ1,D − κ1,t)σω(ωt))−p (r + δ1 + κ1,tσ1,D)+1 = 0 (C.6)

49. These processes can be uniquely constructed from the running maximum and minimum of the difference
between (WR

t +W I
t )−M1,t. For details see Karatzas and Shreve (2012, p. 210) on the Skorohod equation.

50. The reason is that the price-dividend ratio and the ratio of the dividend processes for the two trees
(given in (39)) approach constants, thus implying that m̃t approaches a constant (m̃).
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in the region 0 ≤ ωt ≤ ω̄.

Remark 4 Since there are multiple equilibrium values for wit, κ1,t, and yt in Proposition
6, there exist a large set of solutions for p(·) and ω̄, depending on the equilibrium on which
agents coordinate at each value of ωt.

The expressions for µω and σω in Proposition 6 coincide with (24) and (23) when m̃ = 1,
χ = π, and σ1,t = σD.

51 Moreover, with the dividend growths of stocks 1 and 2 being
independent, so are their stock-price processes (in the limit where stock 1 becomes small)
and the expressions for yt, w

i
1,t, and κ1,t in Proposition 6 (with m̃ = 1 and σ1,t = σD) coincide

with the respective expressions in the baseline model. Finally, if ε = 0, then ω̄ = 1, as in
the baseline model. In short, if one dropped the goods-market clearing requirement from
the baseline model, the resulting expression for the price-to-dividend ratio would be given
by (C.6) (with m̃ = 1 and ε = 0).

The main complications with solving (C.6) are that a) it is a non-linear ODE52 and b)
for ε > 0, this ODE is to be solved over a domain of values of ωt on which V R(ωt) > 0, with
V R(ω̄) = 0 as a boundary condition.

We solve (C.6) with iterated Monte Carlo. We start with the initial guess σ1,t = σ1,D
and some guess for the cutoff ω̄. We define the stopping time to be T the hitting time when
ωt first equals ω̄. With that guess we use a Monte Carlo simulation to evaluate V R

t (ωt, T )
on a grid of ωt values. We find the value ωt for which V

R
t (ωt, T ) = 0 and update our guess

for ω̄ to satisfy V R
t (ω̄, T ) = 0. With this guess for ω̄ we compute the price-dividend ratio on

a grid of ω values by using the Feynman-Kac theorem to express (C.6) as an expectation,
which we evaluate with Monte Carlo simulation. After obtaining the price-dividend ratio on
a fine grid of values, we evaluate p′(ωt)

p(ωt)
, and compute σ1,t =

p′(ωt)
p(ωt)

σω(ωt) + σ1,D. Using this
new guess for σ1,t we repeat the above procedure until convergence.

D Proofs

Proof of Proposition 1. Fix parameters η > 0 and ψ > 1 and define φ according to

φ = σD (η − ψσD) (D.1)

for any value of σD. Note that when σD is sufficiently small, φ is guaranteed to be positive.
We show next that, as σD gets close to zero, Assumption 2 is satisfied. Rearranging (D.1)

gives

η
φ
σD

=
1

1− ψ σD
η

. (D.2)

For sufficiently small σD we obtain

1 + τ >
1

1− ψ σD
η

> 1. (D.3)

51. To see this, substitute the expression for the equilibrium interest rate (22) into (24).
52. Equation (C.6) is non-linear because µi

t and σ
i
t depend on σ1,t, which in turn depends on p(·) and p′(·).
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Combining (D.2) and (D.3) yields (17).
Turning to (18), we note that the definition of ω∗

1 along with (D.1) implies

ω∗
1 = 1− σD

ψσD
=
ψ − 1

ψ
> 0,

while also

lim
σD→0

σD
(1 + τ) φ

σD
− η

= lim
σD→0

σD
(1 + τ) (η − ψσD)− η

= 0.

Therefore, for sufficiently small σD, the left-hand side of (18) converges to ψ−1
ψ

> 0, while
the right-hand side converges to zero, and therefore the inequality holds.

We conclude the proof by showing that F (ω) has a unique root in the interval (ω∗
1, 1).

To this end, it is useful to introduce the definitions

A(ω) ≡ τ
ω

σD
φ, (D.4)

B(ω) ≡ σD − ω

(
(1 + τ)

φ

σD
− η

)
, (D.5)

C(ω) ≡ ω

1− ω

(
σD + (1− ω)

(
φ

σD
− η

))
. (D.6)

With these definitions, F (ω) can be written as F (ω) = B2(ω)− 4A(ω)C(ω). We start by
observing that C (ω∗

1) = 0 for any parametric choice (since the definition of ω∗
1 in Equation

(15) implies σD + (1− ω∗
1)
(

φ
σD

− η
)
= 0). Also, Inequality (18) implies that B (ω∗

1) ̸= 0,

and thus B2 (ω∗
1) > 0. Accordingly, F (ω∗

1) > 0. Also B (1) < ∞, while C (1) = ∞. By
continuity, there exists at least one value ω∗

2 ∈ (ω∗
1, 1) such that F (ω∗

2) = 0.
To show that this value is unique, consider any value ω∗

2 ∈ (ω∗
1, 1) such that F (ω∗

2) = 0.
We next show that F ′(ω∗

2) < 0.
To this end, note that

F ′(ω) = 2B(ω)B′(ω)− 4 [A′(ω)C (ω) + A(ω)C ′(ω)]

= 2B2(ω)
B′(ω)

B(ω)
− 4A(ω)C(ω)

(
A′(ω)

A(ω)
+
C ′(ω)

C(ω)

)
.

Since ω∗
2 is a root of F (ω) it follows that B2 (ω∗

2) = 4A (ω∗
2)C (ω∗

2) . Therefore,

F ′ (ω∗
2) = B2 (ω∗

2)

(
2
B′ (ω∗

2)

B (ω∗
2)

− A′ (ω∗
2)

A (ω∗
2)

− C ′ (ω∗
2)

C (ω∗
2)

)
. (D.7)
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We have

A′ (ω∗
2)

A (ω∗
2)

=
1

ω∗
2

B′ (ω∗
2)

B (ω∗
2)

= −
(1 + τ) φ

σD
− η

σD − ω∗
2

(
(1 + τ) φ

σD
− η

)
and

C ′ (ω∗
2)

C (ω∗
2)

=
1

ω∗
2 (1− ω∗

2)
+

η − φ
σD

σD + (1− ω∗
2)
(

φ
σD

− η
) .

Combining terms gives

2
B′ (ω∗

2)

B (ω∗
2)

− A′ (ω∗
2)

A (ω∗
2)

− C ′ (ω∗
2)

C (ω∗
2)

(D.8)

= −
2
(
(1 + τ) φ

σD
− η

)
σD − ω∗

2

(
(1 + τ) φ

σD
− η

) − 1

ω∗
2

− 1

ω∗
2 (1− ω∗

2)
−

η − φ
σD

σD + (1− ω∗
2)
(

φ
σD

− η
) .

For future reference, we note that using ω∗
2 > ω∗

1 along with (17) and the definition of ω∗
1

implies that

σD + (1− ω∗
2)

(
φ

σD
− η

)
> σD + (1− ω∗

1)

(
φ

σD
− η

)
= 0. (D.9)

Using (D.1) we can write the right-hand side of (D.8) as

− 2 ((1 + τ) (η − ψσD)− η)

σD − ω∗
2 ((1 + τ) (η − ψσD)− η)

− 1

ω∗
2

− 1

ω∗
2 (1− ω∗

2)
− ψ

1− ψ (1− ω∗
2)
. (D.10)

Taking the limit as σD approaches zero, the expression (D.10) converges to

− 1

1− ω∗
2

− ψ

1− ψ (1− ω∗
2)
< 0,

where the inequality follows from (D.9) along with (D.1).53

The fact that the derivative F ′ (ω∗
2) < 0 for any root of the equation F (ω∗

2) = 0 in the
interval (ω∗

1, 1) implies that the root ω∗
2 must be unique.

Proof of Proposition 2. In preparation for the proof, we state and prove an auxiliary
result.

53. Equation (D.1) implies φ
σD

− η = −ψσD, and therefore 0 < σD + (1− ω∗
2)

(
φ
σD

− η
)

=

σD (1− (1− ω∗
2)ψ), where the inequality follows from (D.9).
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Lemma 1 The following statements hold for the quadratic Equation (20).

1. ω∗
1 < ω∗

2 and the discriminant of (20) is non-negative for all ωt ≤ ω∗
2.

2. When ω∗
1 ≤ ωt ≤ ω∗

2, the two roots of the equation are both in the interval [0, 1).

3. For ωt ∈ [0, ω∗
1), only the larger root of (20) is in the interval (0, 1) .

4. If y is a root of (20), then (1− ωt) η − σD − 1−ωt

σD
φ (1− τy) > 0.

Proof of Lemma 1. We start with part 1. Using the definitions (D.4)–(D.6), Equation
(20) can be written in the familiar form

A (ωt) y
2 +B (ωt) y + C (ωt) = 0,

and the discriminant of this quadratic equation is given by F (ωt) as defined in Equation
(16).

For ωt ≤ ω∗
1, C (ωt) < 0 and the discriminant, B2 (ωt) − 4A (ωt)C (ωt), is positive. The

assumption that ω∗
2 is the unique root of F (ω) along with the facts that F (ω∗

1) = B2 (ω∗
1) > 0

and F (1) = −∞ imply that ω∗
1 < ω∗

2.
54 The uniqueness of the root ω∗

2 also implies that
F (ωt) = B2 (ωt)− 4A (ωt)C (ωt) ≥ 0 for all ωt ≤ ω∗

2.
We now turn to part 2. To economize on notation we write A rather A (ωt) and similarly

for B and C. Fix a given ωt and let g (y) = Ay2 + By + C. We have g (1) = A + B + C =
σD
1−ωt

> 0 and g′ (1) = 2A+ B = σD + ωt

(
η − (1− τ) φ

σD

)
> 0, where the inequality follows

from (17). Since A > 0, it follows that all roots of g (y) must be smaller than one. Also, the
fact that ωt ≥ ω∗

1 implies that g (0) = C > 0, while assumptions (17) and (18) together with
the fact that ωt ≥ ω∗

1 imply that g′ (0) = B < 0.
The facts that i) g(y) is a convex, quadratic function of y, ii) g (1) > 0, g(0) > 0,

g′ (1) > 0, and g′ (0) < 0 and iii) B2 − 4AC > 0 for ωt ∈ [ω∗
1, ω

∗
2) imply that there are two

roots in (0, 1) .
For part 3, we note that, when ωt < ω∗

1, g (0) = C < 0, while g (1) = A+B+C = σD
1−ωt

> 0.
Therefore there exists one and only one root in (0, 1) .

Finally, let y ∈ (0, 1) denote a root of the quadratic equation (20). Accordingly,

(1− ωt) η − σD − (1− ωt)
φ

σD
(1− τy) =

1− ωt
ωt

y

(
σD + ωtη − ωt

φ

σD
(1− τy)

)
=

1− ωt
ωt

y

(
σD + ωt

(
η − φ

σD

)
+ ωt

φ

σD
τy

)
> 0,

where the last inequality follows from (17). This proves property 4.

We now continue with the proof of the proposition. We provide expressions for rt and κt
that apply in any equilibrium in which wRt ̸= 0. Since

∑
i

ωit = 1, it follows that
∑

i σ
i
t = 0

54. Assumption (18) implies that B (ω∗
1) ̸= 0 and therefore B2 (ω∗

1) > 0.
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and
∑

i µ
i
t = 0. Using (23) and

∑
i σ

i
t = 0 implies that

∑
i ω

i
tw

i
t = 1. Combining

∑
i ω

i
tw

i
t = 1

with (12) along with the definition yt =
W−

t

W+
t

gives

κt + (1− ωt) η +

(
ωt

1

σD
φ+ (1− ωt) τyt

1

σD
φ

)
1{wR

t <0} = σD. (D.11)

Similarly, using (24) along with
∑

i µ
i
t = 0 and

∑
i ω

i
t (nt + wits

i
t) = 0 gives (22).

We next describe the equilibria for the three intervals of ωt described in the statement of
the proposition.

i) In this case, ωt > ω∗
2. The equilibrium prescribes non-negative portfolios for both

investors. If ωt > 1 − σD
η
, Equation (D.11) implies that κt > 0 and (12) implies that both

investors hold positive portfolios and the shorting market is inactive. If ωt ∈ [ω∗
1, 1 − σD

η
),

then there exists an equilibrium that involves no shorting and a zero portfolio for investor
R. We check this assertion by observing that the associated market clearing requirement
becomes (1− ωt)w

I
t = 1, which together with yt = 0 leads to (19). We then note that

κt +
φ

σD
=

σD
1− ωt

− η +
φ

σD
(D.12)

>
σD

1− ω∗
1

− η +
φ

σD

=0.

The first line follows from (19), the second line follows from ωt > ω∗
1 and the third line

follows from the definition of ω∗
1. Since κt +

φ
σD

> 0, investor R does not choose a negative
portfolio. And since κt < 0 for ωt ∈ [ω∗

1, 1− σD
η
), the investor chooses a zero portfolio.

ii) In this case, ω∗
1 < ωt < ω∗

2. Since ωt > ω∗
1, Equation (D.12) implies that the no-shorting

equilibrium continues to be an equilibrium. There exist, however, two more equilibria. To
compute them, we guess (and verify shortly) that wRt < 0. Using (12) and (D.11) gives

yt =
W−
t

W+
t

=
−ωtwRt,s

(1− ωt)wIt,s
=

ωt
1− ωt

−
(
κt +

1
σD
φ
)

κt + ηt +
1
σD
φτyt

=
ωt

1− ωt

(1− ωt) η − σD − 1−ωt

σD
φ (1− τyt)

σD + ωtη − ωt

σD
φ (1− τyt)

.

Rearranging leads to (20). Statement 1 of Lemma 1 implies that, when ωt ∈ (ω∗
1, ω

∗
2),

Equation (20) has two roots in (0, 1). Under the supposition that wRt < 0, Equation (D.11)
leads to (21). In turn

κ±t +
φ

σD
= σD − (1− ωt) η −

ωt
σD

φ

(
1 + τy±

1− ωt
ωt

)
+

φ

σD

= σD − (1− ωt)

(
η +

φ

σD

(
1− τy±t

))
< 0, (D.13)

where the last inequality follows from statement 4 of Lemma 1. Combining this observation
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with (12) confirms that wRt < 0. Note that in the second and third equilibria we have that

κ±t + ηt +
1

σD
φτy±t = σD + ωtη −

φωt
σD

(
1− τy±t

)
> 0,

where the last inequality follows from (D.13) along with the fact that y± satisfy the equation
(20). This implies that wIt > 0.

iii) In this case, ωt < ω∗
1. Statement 3 of Lemma 1 implies that the quadratic equation

(20) has only one solution in (0, 1) . This shows that there can only be one equilibrium with
shorting. Moreover, this is the unique equilibrium. If wRt were zero and the Sharpe ratio
were σD

1−ωt
− η, then the inequality in (D.12) reverses, i.e., σD

1−ωt
− η + φ

σD
< 0 and investor R

would want to deviate from the equilibrium prescription and choose a negative portfolio.
The dynamics of the wealth share follow from a straightforward application of Ito’s

lemma.

Lemma 2 When the equilibrium is unique, 0 < Φ < 1.

Proof of Lemma 2. We start by noting that an application of the implicit function theo-

rem to (20) gives dy
dη

= 1−y
Z′(y)

, where Z (y) ≡ y
(
η + σD

ωt
− φ

σD
(1− τy)

)
−
(
η − σD

1−ωt
− φ

σD
(1− τy)

)
.

Z (y) is a quadratic equation in y with positive leading coefficient, and satisfies Z (0) < 0
when ωt < ω∗

1. There consequently exists a unique value y > 0 such that Z (y) = 0; for this
value, Z ′ (y) > 0. Hence, dy

dη
> 0.

Next note that Gy = κ+η+2 φ
σD
τy > 0, Gκ = y+ ωt

1−ωt
> 0, and Gη = y > 0. This proves

Φ > 0.
Finally, note that Z (y) = G (y, κ (y)). Therefore, Z ′ (y) = Gy+Gκ

dκ
dy

= Gy (1− Φ) . Since

Z ′ (y) > 0 at the equilibrium value of y, it follows that Gy (1− Φ) > 0. Since Gy = y > 0, it
follows that Φ < 1.

Proof of Proposition 3. We note first that, for w ≤ 0, the function

ι(w, κ) ≡ w (κσD + φ)− 1

2
(wσD)

2 (D.14)

is decreasing in κ, and therefore it attains a higher maximum for equilibrium B (since
κB < κA).

It immediately follows that

gBt − gAt = −
(
κBt − κAt

)
σD +max

w≤0
ι(w, κBt )−max

w≤0
ι(w, κAt ) ≥ 0.

We further have, based on the expressions for gt and µω (Equation (24)),

µBω (ωt)− µAω (ωt) = ωt
(
gBt − gAt

)
+

1

2
ωt

(
wBt (w

B
t − 2)− wAt (w

A
t − 2)

)
σ2
D

= ωt
(
gBt − gAt

)
+

1

2
ωt

(
wBt − wAt

)
(wBt + wAt − 2)σ2

D

> 0,
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with both of the factors in parentheses in the second term on the right-hand side of the
second-to-last line being negative (since wBt < wAt < 0).

Proof of Proposition 4. We start by describing the determination of the equilibrium in
this case. Fix a time t and let E denote expectations with respect to the wealth distribution
over types η at time t. (For notational simplicity, we remove time-subscripts throughout the
proof.) For a given Sharpe ratio κ and anticipated utilization ration y, define the following
two functions, giving the aggregate long and short positions, respectively.

L(y, κ) = E
[
σ−1

(
η + κ+ σ−1τyf(y)

)+]
(D.15)

S(y, κ) = E
[
σ−1

(
η + κ+ σ−1f(y)

)−]
. (D.16)

An equilibrium is defined through the two market-clearing conditions

1 = L(y, κ)− S(y, κ) (D.17)

y =
S(y, κ)

L(y, κ)
. (D.18)

Furthermore, (D.17) defines κ uniquely as a function of y, so that we can write S(y) =
S(y, κ(y)) and L(y) = L(y, κ(y)), and the equilibrium determination comes down to

F (y) ≡ S(y)

L(y)
= y. (D.19)

The remainder of the proof is organized as follows. We start by showing that, given
y1 with h′(y1) < 0, a continuous distribution with connected support (thus the density
does not drop to zero on an intermediate range to then become positive again) exists for
which F ′(y1) > 1. Using this property, we show that there exist multiple equilibria for
this distribution. The continuity of the problem then ensures that, for any sequence of
distributions converging to the one we construct,55 a sequence of equilibrium utilization

rates y
(n)
1 obtain that converges to y1, and consequently F ′

(
y
(n)
1

)
> 1 for n large enough.

In this sense, the set of type distributions admitting multiple equilibria is not “knife-edge”
or even sparse, but in fact has non-empty interior.

For convenience, we define h̄(y) = h(y)
σ

and note that h̄′(y) < 0 is equivalent to h′(y) < 0.
Equation (D.17) implies that

κ(y) =
σ − ωS η̄S − ωLη̄L −

(
ωS f(y)

σ
+ ωLτy f(y)

σ

)
ωS + ωL

, (D.20)

55. Convergence in the space of distribution is defined in terms of convergence of expectations of any
smooth function with compact support.
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where we defined the quantities

ωL = E
[
1{η+κ+σ−1τyf(y)≥0}

]
(D.21)

ωS = E
[
1{η+κ+σ−1f(y)≤0}

]
(D.22)

η̄L = E
[
η | η + κ+ σ−1τyf(y) ≥ 0

]
(D.23)

η̄S = E
[
η | η + κ+ σ−1f(y) ≤ 0

]
. (D.24)

(These quantities depend on y, but we suppress that dependence in our notation.)
Furthermore, one can differentiate the same equation (D.17) with respect to y to obtain

κ′ (y) = −σ−1ω
Sf ′ (y) + τωL (f (y) + yf ′ (y))

ωS + ωL
, (D.25)

where we have made use of the fact that d
dx
E[(g(x, η))+] = E

[
d
dx
g(x, η)1{g(x,η)≥0}

]
for an

arbitrary differentiable function g, given that the distribution of η is absolutely continuous.
Using equations (D.16) and (D.20) and the definitions of h(y) and h̄(y), we compute

S(y) = σ−1 ωLωS

ωL + ωS

(
η̄L − η̄S − σ

ωL
− h̄ (y)

)
= B−1(A− h̄(y)) (D.26)

F (y) =
η̄L − η̄S − σ

ωL − h̄ (y)

η̄L − η̄S + σ
ωS − h̄ (y)

=
A− h̄(y)

A+B − h̄(y)
, (D.27)

where we also defined

A ≡ ηL − ηS − σ

ωL
(D.28)

B ≡ σ

ωS
+

σ

ωL
. (D.29)

Noting now, using (D.16) and (D.25), that

S ′(y) = −σ−1 ωLωS

ωS + ωL
h̄′ (y) = −B−1h̄′(y), (D.30)

we use (D.26) and (D.30), as well as F (y) = S(y)
L(y)

= S(y)
1+S(y)

= 1− 1
1+S(y)

, to write

F ′(y) =
S ′(y)

(1 + S(y))2
=

−Bh̄′(y)(
A+B − h̄′(y)

)2 . (D.31)

Our intermediate goal, therefore, is to show that, given h̄′(y1) < 0, values A and B exist
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satisfying

A− h̄(y1)

A+B − h̄(y1)
= y1 (D.32)

−Bh̄′(y1)(
A+B − h̄(y1)

)2 = 1 + ε > 1 (D.33)

for some ε > 0. In fact, for any ε > 0, solutions A and B to these equations are given by

B = (1− y1)
2

∣∣h̄′ (y1)∣∣
1 + ε

> 0 (D.34)

A = h̄ (y1) +B
y1

1− y1
= h̄ (y1) + y1 (1− y1)

∣∣h̄′ (y1)∣∣
1 + ε

> h̄(y1). (D.35)

To show the existence of a distribution yielding these desired values of A and B, we first
note that the right-hand side of (D.29) can be made arbitrarily close to 4σ while keeping
ωL+ωS < 1, and therefore condition b) of the proposition ensures that such ωL and ωS exist
delivering B for a small enough ε. Fixing ωL and ωS, η̄L and η̄S can be chosen arbitrarily
subject to (D.28) delivering the desired value of A. We therefore now have the value of κ(y1),
which determines the sets of types that go long, respectively short, the asset. Finally, the
density of the distribution on each of these two sets can be chosen freely subject to the two
integrals defining ωL and η̄L, respectively ωS and η̄S. In the complementary, intermediate
type region in which agents are inactive, the density is only subject to a total mass condition.

Finally, with Y = min{1, y | h̄(y) = A}, either Y < 1 and F (Y ) = 0 < Y or F (Y ) =
F (1) < 1 = Y . Since F (Y ) < Y in either case, and F ′ (y1) > 1, a value y2 ∈ (y1, Y ) exists
such that y2 = F (y2). Thus, a second equilibrium exists.

Proof of Proposition 5. The proof essentially repeats the steps from the one-risky asset
case, so we provide only a sketch, focusing on the elements that differ.

With these definitions, the market clearing condition is

ω̂t
∑

i∈{I,R}
ωit
−→w i

t + (1− ω̂t)

[
0
ŵ2,t

]
= −→mt. (D.36)

We consider first an equilibrium with yt > 0. Investor R’s and I’s optimal portfolios are
given by

−→w R
t = (σtσ

′
t)

−1
(−→µ t − rt12×1 +

−→φ ) , (D.37)
−→w I

t = (σtσ
′
t)

−1
(−→µ t − rt12×1 + σ1,t

−→η + τyt
−→φ ) . (D.38)
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Using (D.37) inside (D.36) yields

(σtσ
′
t)
−→mt = ω̂t (ωt (

−→µ t − r1N +−→φ ) + (1− ωt) (
−→µ t − r1N + σ1

−→η + τyt
−→φ ))

+ (1− ω̂t) (σtσ
′
t)

[
0

µ2,t−r
σ2
2,t

]
. (D.39)

Next we use the row selection vector [0, 1] to pre-multiply both sides of (D.39). Noting
that [0, 1]−→φ = [0, 1]−→η = 0, and also

(σtσ
′
t)

[
0

µ2,t−r
σ2
2,t

]
=

[
bt (µ2,t − r)
µ2,t − r

]
, (D.40)

leads to (38). We next note that

[1,−bt]σtσ′
t

[
m1,t

m2,t

]
= [σ1,t, 0]

[
σ1,t 0
btσ2,t σ2,t

] [
m1,t

m2,t

]
(D.41)

= σ2
1,tm1,t.

Pre-multiplying both sides of (D.39) with the row vector [1,−bt], using (D.40), (D.41),
and the definition of κ1,t, and re-arranging yields

κ1,t = m̃1,tσ1,t − (1− ωt) η −
φ

σ1,t
(ωt + (1− ωt)τyt) . (D.42)

Using the definition of κ1,t inside (D.37) gives

wR1,t =
κ1,t
σ1,t

+
φ

σ2
1,t

(D.43)

wI1,t =
κ1,t + η

σ1,t
+
τytφ

σ2
1,t

, (D.44)

where we used the notation wi1,t, i ∈ {R, I}, to denote the first element of wit.

Using the market clearing condition yt = −ωR
t w

R
1,t

ωI
tw

I
1,t

= − ωtwR
1,t

(1−ωt)wI
1,t

leads to (36).

If agent R chooses not to short then the market clearing condition becomes

ω̂t(1− ωt)
−→w I

t + (1− ω̂t)

[
0
ŵ2,t

]
= −→mt. (D.45)

Substituting in −→w I
t from (D.38) and pre-mutiplying by σtσ

′
t gives

(σtσ
′
t)
−→mt = ω̂t(1− ωt) (

−→µ t − r1N + σ1
−→η ) + (1− ω̂t) (σtσ

′
t)

[
0

µ2,t−r
σ2
2,t

]
. (D.46)
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Premultiplying (D.46) by the row [1,−bt] and using (D.40) and (D.41) gives

σ2
1,tm̃1,t = (1− ωt)σ1,t (κ1,t + η) ,

and therefore

κ1,t = σ1,t
m̃1,t

1− ωt
− η. (D.47)

Finally, when both agents hold positive portfolios, the optimal portfolios are −→w R
t =

(σtσ
′
t)

−1 (−→µ t − rt12×1),
−→w I

t = (σtσ
′
t)

−1 (−→µ t − rt12×1 + σ1,t
−→η ). Repeating the arguments in

Equations (D.37)–(D.42), we obtain κ1,t = m̃1,tσ1,t − (1− ωt) η.

Proof of Proposition 6. It remains to derive the differential equation in Proposition 6.
Using the market clearing condition

∑
i∈{I,R} ω

i
tw

i
1,t = m̃, and applying Ito’s Lemma to

ωit =
W i

t

W I
t +W

R
t

leads to

dωit = µiω,tdt+ σiω,tdB1,t (D.48)

with

µiω,t = ωit
[(
wi1,t − m̃

)
σ1,t (κt − σ1,tm̃) + wi1,tft + ñt

]
+ χ

(
νit − ωit

)
,

σiω,t = ωit
(
wi1,t − m̃

)
σ1,t,

and56

ñt ≡ −
∑

i∈{I,R}
wi1,tωt

iλit =
ytm̃

1− yt
ft (1− τ) .

Since ϕ1
ϕ2

≈ 0, the aggregate endowment follows a geometric Brownian motion in the limit,
and the interest rate is constant rt = r. Accordingly, the price of a stock of type 1 follows
the dynamics

dP1,t,s +D1,t,sdt

P1,t,s

= (r + κ1,tσ1,t)dt+ σtdB1,t. (D.49)

Applying Ito’s Lemma to the product P1,t,s = p (ωt)D1,t,s also implies that

dP1,t,s

P1,t,s

=
dpt
pt

+
dD1,t,s

D1,t,s

+
p′ (ωt)

p (ωt)
σRω,tσ1,Ddt. (D.50)

56. Using
∑

i∈{I,R} w
i
1,tω

i
t = m̃t, the definition yt = −

wR
1,tωt1{wR

1,t<0}

wI
1,tω

I
t

and the definition of λit leads to

−
∑

i∈{I,R}
wi

1,tω
i
tλ

i
t =

ytm̃

1− yt
ft (1− τ) .
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Combining (D.49) with (D.50) and using σ1,t = p′(ωt)
p(ωt)

σRω,t + σ1,D and Ito’s Lemma to

compute the drift of dpt
pt

leads to

1

2

∂2p

∂ω2
t

(
σRω,t

)2
+

∂p

∂ωt

(
µRω,t + σRω,tσ1,D

)
− p× (r + δ1 + κ1,tσ1,t) + 1 = 0, (D.51)

which in turn leads to (C.6) after substituting σ1,t =
p′(ωt)
p(ωt)

σRω,t + σ1,D.

E Additional Data Discussion

E.1 Summary Statistics - IHS Markit

We start by reporting some summary statistics on lending fees. In Table E.1, we group
Russell 3000 constituents based on their end-of-prior-year market capitalization into five
quintiles. We then fix the set of stocks in each quintile over the subsequent year and compute
various statistics (median, 75th percentile, etc.) of the daily lending fees for the stocks in
each quintile. We then average across the years. The table shows that the median lending
fee ranges between 0.35% and 0.41%. However, the table also shows that some of the
observations on lending fees can become quite large. For instance, for stocks that are in the
size portfolios 1, 2, and 3, the 95-th percentile of fees exceeds 2 % and the 99-th percentile
exceeds 7% for stocks in portfolios 1, 2, 3, and 4. This table suggests that sometimes even
relatively large stocks (by market capitalization) can exhibit sizeable lending fees.

Table E.2 helps to illustrate this last point in greater detail. Specifically, Table E.2
reports some stock-level statistics on lending fees, and in particular the fraction of Russell
3000 constituents for which a given percentile of shorting fees across time exceeds certain
cutoffs. The table shows that 96% of Russel 3000 constituents exhibit a lending fee in excess
of 1% at some point between 2006 and 2021, while 45% of stocks exhibit a fee in excess of 5%
at some point over that same time period. But even if we leave these extreme observations
aside, and focus on — say — the 95-th percentile of the distribution of lending fees at the
stock level, the numbers are large: 31% of Russel 3000 constituents exhibit a lending fee in
excess of one percent for 5 out of 100 trading days, while 18% of Russel constituents exhibit
lending fees in excess of 3% for 5 out out of 100 trading days.

E.2 Heterogeneous h′(y)

For our baseline results we pooled observations across all stocks and estimated a single
function h′(y). Figure E.1 shows results for the case where we allow h′(y) to differ for each
stock. Specifically, we focus on observations that are on special (DCBS > 1) and estimate a
separate h′(y) for each Russell 3000 constituent. We then evaluate h′(y) for different values
of y for each stock separately. Subsequently, we pool all h′(y) values across all stocks and
present them as a bin-scatter diagram.57 Since stock-level estimates of h′(y) are noisy, we

57. Since the observations per stock are not in the millions (as they are for the pooled regressions in the
text), it is computationally feasible to use a kernel regression estimator with automatic, cross-validated,
bandwidth selection. We present the results for this alternative estimation method, as a check that our
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Table E.1: Summary Statistics of Shorting fees.

Percentile

Size quintile 50th 75th 90th 95th 99th

1 0.41% 0.84% 2.96% 7.43% 28.48%
2 0.38% 0.50% 1.44% 3.97% 19.38%
3 0.36% 0.43% 0.86% 2.04% 12.30%
4 0.34% 0.39% 0.53% 1.02% 7.39%
5 0.35% 0.38% 0.43% 0.50% 1.72%

Total 0.37% 0.51% 1.24% 2.99% 13.85%

Lending fees by stock market capitalization quintile. Each year, we form 5 portfolios of
Russell 3000 constituents sorted into size quintiles based on end-of-prior-year market capi-
talization. Within each size quintile, we compute the pth percentile, p ∈ {50, 75, 90, 95, 99},
of daily shorting fees over the following year. We then report the time-series average of these
percentiles from 2006 to 2021. Daily shorting fees from 2006 to 2021 are from Markit and
are reported as annualized percentage rates.

Table E.2: Stock-level distribution of shorting fees.

Shorting fee cutoffs

Percentile ≥1% ≥2% ≥3% ≥5% ≥10%

90th 0.23 0.16 0.12 0.09 0.05
95th 0.31 0.21 0.18 0.14 0.07
99th 0.50 0.32 0.26 0.21 0.13
99.5th 0.62 0.38 0.30 0.23 0.14
Maximum 0.96 0.79 0.66 0.45 0.27

Fraction of Russell 3000 constituents for which the indicated percentile (first column) of
daily shorting fees exceeds the cutoff noted in the header row. For example, the bottom
rightmost number (0.27) means that 27% of the stocks in the Russell 3000 had a maximum
daily shorting fee in excess of 10%. Similarly, the number 0.12 in the top row/ middle column
indicates that 12% of the stocks have a lending fee in excess of 3 percent for one out of the
ten trading days. Daily shorting fees from 2006 to 2021 are from Markit and are reported
as annualized percentage rates.

trim stock-level estimates of h′(y) at the 10-th and 90-th percentile levels. (Results are
similar if we don’t trim and instead report medians by shorting-utilization bin.) The main
conclusion from Figure E.1 is similar to our conclusion in the text: for low values of y, h′(y)

conclusions are not driven by whether we use kernels or splines to estimate the non-parametric regression.
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Figure E.1: h′(y), binned-means from stock-level estimates using local-linear non-parametric
kernel regressions. For each stock, we estimate the marginal effect h′(y) at 7 points, corre-
sponding to the stock-level 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentile of utilization
for observations exhibiting a Daily Cost of Borrowing Score (DCBS) over 1. Error bars
represent 95% confidence intervals around bin means. Data on shorting fees and shorting
utilization are from Markit over the period 2006 to 2021.

is negative.

E.3 The relation between jumps and specialness

One would expect the economic issues identified by the model to be more relevant among
stocks that are harder to short. Table E.3 confirms this. The incidence of utilization jumps
is larger among stocks that exhibit a higher frequency of trading days with a DCBS score
above one and stocks that have a higher average DCBS score.

E.4 Alternative ways to detect jumps

In the main text we opted for a very simple and transparent definition of a jump. Specifically,
we defined jumps as instances where utilization jumps by more than a given cutoff. This
approach is intuitive and helps identify economically large jumps.

In this subsection we consider a more sophisticated approach to identifying jumps in
utilization. To start, we note that there are various approaches in the econometric literature
to test whether a given time series, which is observed at discrete time intervals, emanates
from a continuous sample-path process against the alternative hypothesis that the underlying
stochastic process exhibits jumps. In testing for jump-discontinuities, we opted to use the
test of Aı̈t-Sahalia and Jacod (2009), which is based on testing for some general properties
of higher-order moments of diffusions at short observation intervals. To apply the test we
use the highest frequency data that we have on utilization (daily) and isolate contiguous,
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Table E.3: Regressions of Jump Rate on stock-level measures of specialness

Annualized Jump rate

|∆y| ≥ 5.5% |∆y| ≥ 8.0% |∆y| ≥ 10.0%

Panel A: Large changes in Shorting Utilization

Pct. special 23.388∗∗∗ 20.835∗∗∗ 19.627∗∗∗

(46.321) (38.405) (35.133)

DCBS 4.573∗∗∗ 4.077∗∗∗ 3.841∗∗∗

(31.476) (27.928) (26.279)

N 6156 6156 6156 6156 6156 6156

Panel B: Large changes in Shorting Utilization driven by changes in Shorting Demand

Pct. special 11.827∗∗∗ 10.352∗∗∗ 9.648∗∗∗

(38.531) (32.273) (29.455)

DCBS 2.171∗∗∗ 1.899∗∗∗ 1.770∗∗∗

(24.871) (22.086) (20.695)

N 6156 6156 6156 6156 6156 6156

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Jump rate is calculated as annualized rate of detected jumps in shorting utilization. Jumps
are identified as trading weeks during which the absolute change in shorting utilization
exceeds, depending on the specification, 5.5%, 8%, or 10%. Percent special is the fraction of
trading days on which the stock has a DCBS greater than 1. DCBS is the simpe time-series
average of daily DCBS scores for each stock.

uninterrupted samples of daily data without a change in the number of outstanding shares.58

If the Aı̈t-Sahalia and Jacod (2009) rejects continuity, we proceed to identify the time of
the occurrence of the jump(s) using the jump-robust volatility estimator of Wang and Zheng
(2022). Specifically, for a discretely-observed process, x, Wang and Zheng (2022) provides a
jump-robust estimate of local diffusive volatility, σ̂(x). Using this estimate, we can compute∣∣∣ ∆x
σ̂(x)

∣∣∣, which can be interpreted as a local “z-score” for the daily change in x. We identify

the dates when this z-score is above 4 as “jump dates,” in order to isolate economically
meaningful jumps.

Table E.4 repeats the analysis of Table 1, but using this alternative definition of a jump.
Specifically, for each stock we count the number of jumps according to the procedure de-
scribed in the above paragraph (assigning a value of zero jumps to stocks where the Aı̈t-
Sahalia and Jacod (2009) test cannot reject continuity). We then divide by the number of
trading-day observarions for the respective stocks to arrive at a jump rate for each stock.
Table E.4 shows that the results of Table 1 remain unchanged when we use this alternative
jump-rate definition.

58. This latter restriction is done to ensure that utilization does not change due to –say– share issuance.
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Table E.4: Alternative identification of the jump rate.

Jump rate

Pct. special 15.829∗∗∗

(22.358)

DCBS 3.682∗∗∗

(16.738)

1h′<0 0.177∗∗∗

(4.793)

1Rejecth′>0
0.097∗∗

(2.635)

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

This table repeats the regressions of Table E.3 and Table 1, except that the jump rate is
computed according to the methodology described in section E.4.
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Figure E.1: h′(y) and f ′(y), binned-means from jump discontinuities. Estimated marginal
effects are calculated by dividing observed weekly changes in h(y) = f(y) (1− τ y) by ob-
served weekly changes in shorting utilization, conditional on sufficiently large weekly changes
in shorting utilization, defined to be a change in shorting utilization whose magnitude ex-
ceeds 5.5%. We calibrate τ to be 0.8 based on industry literature on the pass-through of
shorting fees to institutional investors. Sample consists of daily observations of shorting fees
and shorting utilization for Russell 3000 constituents. Error bars represent 95% confidence
intervals around bin means. Data on shorting fees and shorting utilization are from Markit
over the period 2006 to 2021.
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F Details and Additional Results for Section 6.4

F.1 Measuring ticker discussion on WallstreetBets

Our measure of ticker mentions on WallstreetBets is constructed as follows. We use the
PushshiftAPI to collect all submissions posted on WallstreetBets subreddit from January 1,
2020 through February 7, 2021 (Baumgartner et al. 2020). For each submission, we observe
the title text, the body of the submission, the author of the submission, and the time of the
submission.

We then identify all cases in which these tickers are mentioned in submissions, irrespective
of whether they are prefixed with a dollar sign. To address the possibility of falsely identifying
tickers, we require that, if the ticker is a common word in the written English language, it
must be prefaced by a dollar sign. For example, AT&T’s ticker T is also a common word in
written English, and thus we require that the text “$T” appear in a submission for it to be
considered as mentioned AT&T. We consider a ticker as being mentioned in a submission if
it appears in either the title or the body of the submission. We identify common word-stems
based on the Google Trillion Word Corpus (Michel et al. 2011). In a robustness check, we
account for the downward bias this restriction introduces by scaling common-word tickers
by an in-sample estimated adjustment factor. This adjustment leaves the relative ranking
of ticker mentions largely unchanged. We estimate the adjustment factor by comparing the
frequency of tagged ticker mentions versus untagged ticker mentions for the set of tickers
which do not commonly appear in written English.

Revised submissions and comments. Authors of Reddit comments have the ability to
edit their comments even after the comment has been posted. The PushshiftAPI records the
comment text as of a certain day, and does not update to reflect potential revised comments.
The same constraint applies to the content body of submissions. Titles of submissions cannot
be revised and thus do not have this measurement problem.

Missed tickers Tickers that, for whatever reason, are never tagged with a leading dollar
sign will be omitted from our dataset. Similarly, we under-count the occurrences of tickers
that are common words, owing to requiring they appear with a leading “$” We attempt to
correct for this by scaling the observed counts for common word tickers. For AAPL and
GME, which are not common word tickers, the ticker appears with the leading “$” roughly
20% of the time. We can thus simply multiply our observed frequencies by a factor of five
to adjust for the more stringent matching procedure. As can be seen in Figures F.1a and
F.1b, the adjustment does not have a significant impact on the relative popularity of the top
tickers.

In some cases, users may choose to refer to the company by its name, rather than by its
ticker. We do not attempt to identify mentions of companies by name.

F.2 Measuring retail trading

We adopt the methodology of Boehmer et al. (2020) to identify retail trades in the TAQ
data. We briefly summarize the methodology here and refer readers to the paper for details.
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Figure F.1: Popular Tickers on WallstreetBets (January 1, 2020 – February 7, 2021).
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The intuition behind the methodology is the knowledge that retail trades are often ex-
ecuted by wholesalers or via broker internalization, rather than on the major trading ex-
changes. These trades appear in the TAQ consolidated tape data under the exchange code
“D.” These trades are given a small price improvement on the order of tenths of a penny
as a means to induce brokers to route orders to the wholesaler. Similarly, brokers which
internalize retail trades offer a subpenny price improvement in order to comply with Regu-
lation 606T. Importantly, institutional trades are rarely, if ever, internalized or directed to
wholesalers and their trades are usually in round penny prices, with the notable exception
of midpoint trades.

The methodology of Boehmer et al. (2020) uses these institutional details to identify
retail trades in the TAQ consolidated tape data. Trades flagged with exchange code “D”
and with a subpenny amount in the set (0, 0.40)∪ (0.60, 1.00) are identified as retail trades.
Splitting these trades further, retail trades with subpenny amounts between zero- and forty-
hundredths of a penny are labeled as “sell orders,” whereas subpenny amounts between
sixty- and one hundred-hundredths are considered “buy orders.” The midpoint trades are
excluded to avoid mis-classifying institutional trades executed at midpoints as retail trades.

F.2.1 Challenges

Derivatives The TAQ data only contains trades of equities. Options offer another way to
benefit for investors to benefit from increases in the price of stock. As an added advantage
for retail investors, options offer embedded leverage greater than what might otherwise be
available through their broker. The Boehmer et al. (2020) methodology relies on institutional
details to identify off-exchange retail trades, and thus cannot reliably identify replication
trades by market makers.

F.3 Betting against the shorts portfolio

As is standard in the literature, we restrict attention to common shares of COMPUSTAT
firms which trade on the NYSE, AMEX, and NASDAQ exchanges. We further exclude
companies for whom no share class has a price exceeding $1. The strategy equally weights
each firm in the top decile, shorts the market index, and reconstitutes 8 trading days following
the disclosure date, which is the first opportunity following the public dissemination of the
short interest data.
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G Additional Table and Figures
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Figure G.1: Monthly returns (1973–2021). Histograms show monthly returns to a trading
strategy long stocks in the top decile of short interest and short the market index. The top-
left plot depicts equal-weighted returns, excluding the six most-popular stocks discussed on
Reddit (AMC, BBBY, GME, SPCE, TLRY, and TSLA). The top-right plot depicts equal-
weighted returns, further excluding small market capitalization stocks. The bottom-left
plot depicts value-weighted returns. The bottom-right plot depicts value-weighted returns,
excluding popular stocks discussed on Reddit. The arrows indicate the portfolio returns in
the months of November and December 2020 and January 2021.
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Highly Shorted Stocks Excl. Popular Reddit Stocks Excl. Small Stocks

Panel A: November 2020

rEW 0.163 0.160 0.227
(4.127) (4.050) (5.194)

rVW 0.094 0.092 0.133
(3.062) (3.029) (3.455)

rEWFF3 0.084 0.081 0.160
(3.452) (3.327) (4.371)

rVWFF3 0.045 0.043 0.083
(1.769) (1.706) (2.431)

Panel B: December 2020

rEW 0.055 0.058 0.019
(1.385) (1.477) (0.437)

rVW 0.033 0.036 0.021
(1.088) (1.191) (0.540)

rEWFF3 0.012 0.016 -0.002
(0.515) (0.665) (-0.056)

rVWFF3 0.012 0.014 0.008
(0.466) (0.576) (0.244)

Panel C: January 2021

rEW 0.271 0.232 0.156
(6.835) (5.865) (3.576)

rVW 0.194 0.161 0.183
(6.341) (5.293) (4.764)

rEWFF3 0.208 0.169 0.121
(8.560) (6.978) (3.296)

rVWFF3 0.171 0.136 0.165
(6.709) (5.452) (4.816)

Table G.1: Portfolio returns (November 2020–January 2021). Test of whether the monthly
return to the strategy of betting against the shorts is “abnormal” in November 2020 (Panel
A), December 2020 (Panel B), and January 2021 (Panel C). The table reports the coefficient
and the t-statistic of the month dummy variable that takes the value of one for the month
listed in the title of the panel and zero otherwise from the regression:

rBetting against the shorts = const. + month dummy + β′Ft + εt.

The first two rows of each panel do not control for any factor exposures and refer to equal-
weighted (EW ) and value-weighted (VW ) returns, respectively. The last two rows of each
panel control for Fama-French 3-factor exposures.
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Figure G.2: Seven-day moving average of daily submissions to the WallstreetBets subreddit
(January 1, 2020 – February 7, 2021). The vertical axis is on a logarithmic scale.
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Figure G.3: Retail trading volume in GME (January 7 – January 29, 2021). Hourly trading
volume in GME, measured using the methodology of Boehmer et al. (2020), plotted together
with hourly mentions of the GME ticker on the WallStreetBets subreddit. Both vertical axes
are on logarithmic scales.
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Figure G.4: Aggregate short interest (July 2020–June 2021). The figure plots value-weighted
short interest for highly shorted stocks as of October 31, 2020. Highly shorted stocks are
defined as the stocks in the top decile of the Russell 3000, ranked by short interest. The
identities of these stocks is fixed and their short interest is plotted over the preceding four
and subsequent eight months.
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