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Short interest in individual stocks is unstable, exhibiting sudden and large changes. We

propose a theoretical explanation for this instability, relying on a feedback loop between the

spot and the lending markets. Our theory can also help explain why short sellers sometimes

abandon their positions despite an increased profitability of shorting.

The novel aspect of our theory is that it does not rely on portfolio constraints, limitations

to arbitrage capital, agency issues, etc. Instead, our mechanism is built on a detailed modeling

of stock-lending income and its implications for spot-market clearing. We show that lending

income gives rise to a feedback mechanism between a stock’s expected return and short

interest that can generate a “backward-bending demand,” and accordingly sudden equilibrium

shifts in short interest and expected returns.

We document that large and sudden changes in shorting activity are a broad phenomenon.

Viewed as a time series, the short interest process of many stocks exhibits jump-like features.

These features appear linked to the backward-bending demand channel that we highlight:

the stocks that satisfy empirically the specific condition for a backward-bending demand

curve implied by the model are also the ones that show the highest incidence of large and

sudden changes in short interest.

The model features investors with heterogeneous beliefs about the expected return of a

positive-supply risky stock: one group is optimistic, while the other holds rational beliefs.1

This difference of opinion between investors prompts them to trade with each other, with the

rational investors having an incentive to short the stock whenever the expected excess return

becomes negative. Shorting a stock requires borrowing it, for a fee determined endogenously

in the lending market as a result of bargaining.

We first discuss the model’s implications for the Sharpe ratio; later, we turn to the

price-dividend ratio. The presence of lending fees modifies the returns experienced by both

long and short investors. The equilibrium risk compensation (the ratio of excess return to

volatility, or “Sharpe ratio”) is impacted both by the magnitude of the lending fee and the

fraction of a representative lender’s shares that are shorted. Following common terminology,

we refer to the ratio of shorted-to-lendable shares as the “utilization” ratio.

1. Motivated by the empirical fact that stocks with high short interest tend to have low subsequent returns,
we assume that the comparatively pessimistic investors are actually rational, but this is not an essential
assumption for our results.
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All else equal, a higher utilization ratio acts as an increased subsidy for long positions,

since a larger fraction of the representative long position is lent out to short sellers. This

subsidy can generate equilibrium multiplicity, since the increased incentive to purchase the

stock ends up reducing its Sharpe ratio and consequently inducing more shorting, thus

supporting the high utilization ratio as an equilibrium outcome. In addition, other equilibria

may exist, including one equilibrium featuring no shorting at all. These equilibria feature

lower utilization ratios, thus lower subsidies for long positions, and consequently higher

Sharpe ratios and smaller short positions. The model also provides a necessary and sufficient

condition for multiple equilibria (Proposition 4). The condition is in terms of an observable

quantity, namely the gap between the lending fee paid by the short seller and the lending

income received by the representative long investor.

While the main focus of the paper is theoretical, we also test the above model predictions

empirically. Specifically, we argue that our theory may help explain some salient time-series

properties of the utilization ratio. According to the model, short-run changes in the utilization

ratio are small and (locally) normally distributed most of the time; but when there are changes

in equilibrium, this ratio jumps. Therefore, the distribution of the changes in the utilization

ratio should be fat-tailed. Empirically, the changes in the utilization rate are remarkably fat

tailed. Further, we confirm that the stocks that satisfy our necessary and sufficient condition

for multiplicity (Proposition 4) are the ones that are the most likely to exhibit jumps in

utilization.

The baseline model targets the study of shorting activity and the Sharpe ratio, but log

utility in a one-positive-supply-asset setting generates a constant price-dividend ratio. To

discuss the model implications for the price-dividend ratio we develop two model extensions.

These extensions highlight two distinct mechanisms, acting through the dynamics of the

investor wealth shares, that cause the price-dividend ratio to increase when short-selling

declines. We are particularly interested in illustrating this outcome, because one would think

that a higher stock price is associated with more, not less, short selling.

In the first extension, we generalize the baseline model to allow for recursive preferences

with an IES below one. We show that the wealth dynamics imply that the price-dividend

ratio is lower when investors coordinate on the high- rather than the no-shorting equilibrium.
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The intuition is that all investors believe that their wealth growth is higher when the shorting

market is more active, since the active trading will help them vindicate their views. The

higher anticipated wealth growth encourages more consumption today and pushes down the

relative price of the positive supply asset to consumption (i.e., the price-dividend ratio).

The second extension is designed to address the fact that shorting frictions and belief

disagreement usually pertain only to a few small stocks, rather than the market as a whole.

To this end, we retain the unit IES assumption and instead extend the baseline model to

allow for a large and a small stock.2 In the spirit of realism, we also assume that only a small

fraction of investors pay attention to the small stock and incur a small participation cost in

doing so. We show that the shift to a low shorting equilibrium causes rational investors to exit

the market for the small stock, since remaining in a market without a trading opportunity

is not worth paying that participation cost. The exit of rational short-sellers increases the

wealth share of irrational investors, which can lead to a rise in the price of the stock.

The paper concludes with a “case study” on the fickle behavior of short sellers. We

document that the period between November 2020 and January 2021 saw an abrupt decline

in short interest across hundreds of highly shorted stocks, and was also the worst period for

a “betting against the short sellers” strategy, i.e., a strategy that goes long the top decile of

most shorted stocks and shorts the market portfolio.

It is tempting to attribute this episode to the highly mediatized events involving the

company GameStop, which saw online-forum-coordinated retail purchases resulting in a short

squeeze of its stock. However, the broad-based short-seller retreat that we focus on started

eight weeks before the GameStop episode and impacted stocks that were not particularly

discussed online by retail traders and did not experience an appreciable change in retail

purchase volume.

There are three aspects of this episode that are pertinent for our model. First, the episode

helps illustrate how abruptly and dramatically short selling can decline. Second, the retreat

of the short sellers coincides with a rise in prices, a puzzling phenomenon3 that our model

2. With this assumption, the interest rate becomes essentially fixed and therefore fluctuations in the Sharpe
ratio are mirrored in the price-dividend ratio of the small stock. By contrast, in the baseline model the
assumption of log utility and i.i.d. dividend growth imply that fluctuations in the Sharpe ratio are exactly
offset by fluctuations in the interest rate, leaving the price-dividend ratio unaffected.

3. In a static model, lower short-seller demand would only be consistent with a lower price and higher

3



can account for (see Section 6). Finally, the retreat of the short sellers predated the spike

in online discussion. One possible explanation for this retreat was the fear of an impending

change in retail-investor behavior. Absent the backward-bending demand feature of our

model, however, an impending rise in irrationality would raise the profitability of short selling

and increase short interest, which is the opposite of what happened in the data.

The paper is organized as follows. After a brief literature review, Section 1 lays out the

baseline version of the model and Section 2 presents the main analytical results. Section

3 discusses the dynamics of the investor wealth shares. Section 4 generalizes the results of

Section 2 and provides necessary and sufficient conditions for equilibrium multiplicity. Section

5 tests the model’s main empirical implications. Section 6 presents extensions to non-unit

IES and multiple stocks. Section 7 discusses the curious patterns of short selling between

November 2020 and January 2021. Section 8 concludes. Proofs, detailed descriptions of the

data, and additional results are contained in the appendix.

Related Literature

Our work relates to several strands of the asset-pricing literature. The most closely related

one considers the joint determination of lending fees, short interest, and returns. In particular,

D’Avolio (2002), Duffie, Gârleanu, and Pedersen (2002), Vayanos and Weill (2008), Banerjee

and Graveline (2013), Evgeniou, Hugonnier, and Prieto (2022), and Atmaz, Basak, and

Ruan (2023) consider explicit frictions to lending and borrowing shares, which translate into

non-zero lending fees that in turn impact expected returns.4 Similar to D’Avolio (2002),5

Banerjee and Graveline (2013), and Atmaz, Basak, and Ruan (2023), the lending and spot

markets clear simultaneously in our paper, but we use a different micro-foundation to obtain

a positive lending fee. Specifically, we don’t impose any hard constraint on the shares that

a long investor can lend.6 Instead, we obtain a positive lending fee by assuming that the

expected return.
4. Such frictions also motivated the empirical studies of Geczy, Musto, and Reed (2002), Lamont (2012),

Jones and Lamont (2002), Kaplan, Moskowitz, and Sensoy (2013), Porras Prado, Saffi, and Sturgess (2016),
and Asquith, Pathak, and Ritter (2005) among others.

5. More precisely, to a working-paper version of this study, which contains a theoretical model that did
not appear in the published article.

6. Evgeniou, Hugonnier, and Prieto (2022) also does not impose a hard constraint on the quantity of
lendable shares. Instead, it assumes that the supply of lendable shares is adjusted by a monopolistic entity to
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process of matching share lenders and borrowers is a time-consuming activity, which requires

compensation, similar in spirit to Duffie, Gârleanu, and Pedersen (2002). By taking that

route, our model allows for a more general specification of the supply curve of lendable

shares, which is not confined to being vertical.7 This specification of the supply curve for

lendable shares leads to a feedback loop between the Sharpe ratio and short interest that

is not present in the aforementioned papers (which feature unique equilibria). In addition,

our model allows us to explore the dynamic effects of an equilibrium shift, driven by the

endogenous fluctuations in the wealth shares of the different types of agents.8

An even larger number of papers assume that shorting is prohibited and analyze implica-

tions for returns. Prominent examples here include Harrison and Kreps (1978), Miller (1977),

Diamond and Verrecchia (1987), Detemple and Murthy (1997), Hong and Stein (2003), and

Scheinkman and Xiong (2003). As in Harrison and Kreps (1978) and Miller (1977), we model

the motive for trade in our paper in the convenient form of (dogmatic) differences of opinions

among agents.

A large body of work studies the empirical relation between short interest and stock

returns. Seneca (1967), Senchack and Starks (1993), Desai et al. (2002), Diether, Lee, and

Werner (2009), Asquith, Pathak, and Ritter (2005), Blocher, Reed, and Van Wesep (2013),

Beneish, Lee, and Nichols (2015), and Dechow et al. (2001) study the cross-sectional relation

and find that stocks with higher short interest under-perform those with lower short interest.

Cohen, Diether, and Malloy (2007) and Boehmer, Jones, and Zhang (2008) use proprietary

data on quantities lent as well as shorting fees and find consistent results. Duong et al. (2017)

studies the empirical relation between lending fees and stock returns and finds that high

lending fees predict lower future returns. Drechsler and Drechsler (2014) documents that

asset pricing anomalies concentrate in stocks with high shorting fees. Lamont and Stein

maximize lending revenue. In our paper, investors face search frictions in the lending market that make it
costly to locate lendable shares.

7. An exception is Atmaz, Basak, and Ruan (2023). In their model, individual agents’ supply curves are
vertical, but the aggregate supply curve has finite elasticity due to composition effects when aggregating
across agents.

8. The fact that shorting requires borrowing shares and is subject to natural collateral requirements has
several interesting general equilibrium implications, as explored by Fostel and Geanakoplos (2008), Simsek
(2013), and Biais, Hombert, and Weill (2021). In contrast, our model focuses on the general equilibrium
implications of the associated lending fees.
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(2004) studies the information content in aggregate short interest and finds that short interest

declined as stock market valuations rose in the late 90’s. Rapach, Ringgenberg, and Zhou

(2016) shows that the predictive power of aggregate short interest stems predominantly from

a cash-flow channel.

Our paper also relates to a sizable theoretical literature analyzing multiple equilibria

in asset pricing and macroeconomics. Multiple equilibria can arise through a number of

mechanisms, chief among them a) bubbles (or money) in OLG economies, b) increasing

returns to scale and production externalities, and c) portfolio constraints.9 The mechanism

that gives rise to multiple equilibria in our paper is different, since it relies on the interaction

between the lending and the spot markets. We also note in this context that, while Vayanos

and Weill (2008) features multiple equilibria in the presence of shorting frictions and fees, the

multiplicity of equilibria pertains to agents’ choice of market to join, which renders one asset

more liquid (that is, easier to find) and thus increases its attractiveness to future entrants.

In addition, in our setup the spot market is not a search market, but is Walrasian.10

Finally, several recent papers target specifically the set of events involving GameStop.

See, for instance, Pedersen (2022) and Allen et al. (2021).

1 Model

1.1 Agents: life-cycle and preferences

Time is continuous and infinite for tractability. To obtain a stationary wealth distribution, we

follow Gârleanu and Panageas (2015) and assume that investors continuously arrive (“births”)

and depart (“deaths”) from the economy. Per unit of time a mass π of investors arrives, and

a mass π departs. Therefore, the population of agents born at time s ≤ t and still remaining

at time t is πe−π(t−s). The total population is constant and equal to
∫ t
−∞ πe−π(t−s)ds = 1.

9. We refer the reader to the survey by Benhabib and Farmer (1999), which lists and discusses the
different mechanisms that lead to multiple equilibria and indeterminacies. Recent examples of papers using
multiple-equilibrium models in asset pricing include Gârleanu and Panageas (2021), Khorrami and Zentefis
(2020), Khorrami and Mendo (2021), Zentefis (2022), and Farmer and Bouchaud (2020).
10. Coordination issues are central in economies admitting multiple equilibria, but can also be of first-order

importance in unique-equilbrium settings, as highlighted by Abreu and Brunnermeier (2002) in a model
featuring binding portfolio constraints and a non-Walrasian price protocol.
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“Births” and “deaths” should be understood as arrivals and departures of market participants,

a point that will become clearer in Section 6.2, where we introduce multiple stocks.

To introduce trade in equities, we assume that investors have heterogeneous beliefs. For

simplicity, a fraction ν ∈ (0, 1) of investors perceive the correct data-generating process. We

refer to them as rational investors (R investors). The remaining fraction are overly optimistic

(we model this optimism shortly), and we refer to these investors as I investors.

For tractability, both investors have logarithmic utilities and their expected discounted

utility from consumption is

V i
t ≡ Ei

t

∫ ∞

t

e−(ρ+π)(u−t) log
(
ciu,t
)
du (1)

for i ∈ {I, R}, with ρ a discount rate and ciu,t the time-u consumption of an agent of type i

born at time t ≤ u. The notation Ei
t reflects the different investor beliefs. Because of death,

the effective discount rate is ρ+ π.

Before proceeding, we note that, while we require heterogeneous beliefs to introduce a

motivation for trading, the assumption that one group has correct beliefs helps mostly to

save notation and can be easily relaxed. The same applies to the assumption that there

are only two groups of investors, which can be relaxed to allow for multiple investor types,

including a continuum (Section 4). Similarly, the overlapping-generations structure is just

a technical device to ensure that no investor type disappears in the long run.11 Finally, in

setting up the model we make the (conventional) assumption that agents maximize over both

their consumption and portfolio choices, which we introduce shortly. Our model is, however,

equivalent to one in which agents delegate their portfolio decisions to professional managers

and managers maximize their clients’ expected portfolio (logarithmic) growth according to

the managers’ beliefs (R or I). The investors in our model can therefore be equivalently

thought of as institutional investors.

11. In particular, the lack of inter-generational risk sharing, which is a feature of some of these models, is
not driving any of the results in this paper.
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1.2 Endowments

In order to support their consumption over their lives, we assume that the arriving investors

at time t are equally endowed with shares of new “trees,” which arrive at time t.12 Letting

s ≤ t denote the time of arrival of a tree, we specify its time-t dividends as

Dt,s = δe−δ(t−s)Dt, (2)

where δ > 0 captures depreciation and Dt follows a geometric Brownian motion with mean

µD and volatility σD > 0,

dDt

Dt

= µDdt+ σDdBt, (3)

with Bt a standard Brownian motion. Accordingly, the time-t total endowment of this

economy is the sum of the endowment produced by all trees born up to to time t,

∫ t

−∞
Dt,sds =

(∫ t

−∞
δe−δ(t−s)ds

)
×Dt = Dt.

The arriving investors sell their shares, which become part of the market portfolio. An

implication of assumption (2) is that the dividend growth, dDt,s

Dt,s
= (µD − δ)dt+ σDdBt, is the

same for any vintage s, and equals the dividend growth of the market portfolio. In turn, the

return of the market portfolio, dRt, can be written as

dRt = µt dt+ σt dBt, (4)

where µt and σt are stochastic processes to be determined in equilibrium.

In the real world, shorting frictions are more relevant for a small fraction of stocks rather

than the broad stock market. In Section 6.2 we extend the model to allow for multiple stocks

and study the special case in which the shorting frictions are relevant for small stocks only.

12. The assumption that investors are endowed with shares of newly arriving trees follows Gârleanu, Kogan,
and Panageas (2012) and Panageas (2020). This assumption is just a convenient way to endow new cohorts
as compared to introducing labor income (as in Gârleanu and Panageas (2015) or Gârleanu and Panageas
(2023)). Since the goal of the overlapping generations structure in this paper is merely to ensure stationarity,
we adopt this more convenient shortcut.
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1.3 Beliefs

The irrational investors are optimistic and believe that the aggregate endowment grows at

the rate µI > µD. Irrational investors hold this optimistic view over their lifetime and do not

learn (“dogmatic beliefs”). Learning would be a distraction for the purposes of this paper

and therefore we omit it.

1.4 Dynamic budget constraint and short-selling frictions

The main departure from a frictionless market is that selling the stock short requires paying

a lending fee, ft. Specifically, letting W
i
t,s denote the time-t wealth of an investor of type i

who was born at time s ≤ t and wit,s denote the fraction of wealth invested in the stock, the

dynamic budget constraint is

dW i
t,s = W i

t,s

(
rt + π + nt + wit,s

(
µt − rt + λit,s

)
− cit,s
W i
t,s

)
dt+ wit,sW

i
t,sσtdBt, (5)

where rt is the equilibrium interest rate and πW i
t,s is the income per unit of time earned from

annuitizing her entire wealth, since she has no bequest motives. (We follow Blanchard (1985)

in assuming the existence of a competitive insurance company. Investors pledge their wealth

upon death in exchange for receiving an income stream while alive. This income stream

is equal to the hazard rate of death, π, per unit of pledged wealth, so that the insurance

company breaks even.) The non-standard terms in equation (5) are the λit,s and nt, which we

describe next.

The term λit,s captures the presence of lending fees. It is defined as

λit,s ≡ λt(w
i
t,s) ≡ ft ×

(
1{wi

t,s<0} + τyt1{wi
t,s≥0}

)
, (6)

where 1{·} is an indicator function, yt is the fraction of a long portfolio that is lent out by the

representative “brokerage house,” and τ is the fraction of the lending fees that accrues to

the investor. (We discuss the determination of yt, τ , and ft shortly.) Equation (6) reflects

that an investor with a short position wit,s < 0 has to pay a proportion ft of the value of her

entire short position, |wit,s|W i
t,s, so that the net-of-fee excess rate of return per dollar shorted
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is − (µt − rt + ft) dt − σtdBt. Similarly, an investor holding a positive position, wit,s > 0,

obtains an excess rate of return equal to (µt − rt + τytft) dt+σtdBt on her stock investments.

Market clearing for share lending requires that the fraction of the representative long

position that is lent out, yt, times the aggregate long position, W+
t , equal the value of the

aggregate short position, W−
t :

ytW
+
t = W−

t , (7)

where

W−
t ≡

∑
i∈{I,R}

∫ t

−∞
|wit,s|W i

t,s1{wi
t,s<0}ds (8)

W+
t ≡

∑
i∈{I,R}

∫ t

−∞
wit,sW

i
t,s1{wi

t,s>0}ds. (9)

Following industry terminology, we henceforth refer to the quantity yt as the utilization

ratio (or utilization for short), since it captures the fraction of lendable shares that are utilized

by shorters.

To close the model, we must specify the lending frictions and derive the fee. In the text,

we specify ft through a supply curve ft = f(yt) given by a non-decreasing function f . In

Appendix A, however, we model explicitly a search-and-bargaining friction yielding such a

supply curve. Specifically, we introduce competitive firms specializing in servicing either

borrowers (“brokers”) or lenders (“security lenders”). Brokers are faced with a demand

from would-be short sellers, while security lenders obtain investors’ long portfolios. Brokers

and security lenders are matched pairwise subject to a “labor cost” and engage in bilateral

negotiations that result in a lending fee ft. In equilibrium, the fee is the same for all shares

that are lent, and therefore the total revenue from lending shares equals the fee multiplied by

the value of all shares lent. This revenue is shared between the stock owners (a fraction τ

of the lending revenue) and the households as compensation for their labor (the remaining

1− τ fraction). These shares are driven by the relative bargaining powers of stock borrowers

and lenders.
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The term nt in equation (5) captures the compensation for the labor cost in operating the

matching technology. Denoting aggregate wealth at time t by Wt, we have nt =
(1−τ)ftW−

t

Wt
.

We note that aggregate share-lending fees, ftW
−
t , accrue back to the households as the sum

of lending income to long portfolios, τftytW
+
t = τftW

−
t , and compensation for operating the

matching technology, ntWt = (1− τ)ftW
−
t .

1.5 Equilibrium definition

Equilibrium in the lending market requires that the supply of lendable shares ytW
+
t is equal

to the demanded short interest, W−
t (equation (7)).

The rest of the equilibrium definition is standard. We require that investors I and R

maximize (1) over cit,s and w
i
t,s subject to the budget constraint (5), and µt, rt, and σt are such

that the bond market clears,
∑

i∈{I,R}
∫ t
−∞ νi

(
1− wit,s

)
W i
t,sds = 0, the stock market clears,∑

i∈{I,R}
∫ t
−∞ νiwit,sW

i
t,sds = Pt, and the goods market clears,

∑
i∈{I,R}

∫ t
−∞ νicit,sds = Dt. By

Walras’ Law, market clearing of the bond market implies stock market clearing and vice

versa, and accordingly the asset-market clearing requirements can be written equivalently as

Wt =
∑

i∈{I,R}
∫ t
−∞ νiW i

t,sds = Pt.

For future reference, we note that stock market clearing implies yt =
W−

t

W+
t

=
W−

t

Pt+W
−
t

< 1. It

also implies that there is a simple, monotone relation between the utilization ratio, yt, and

short interest,
W−

t

Pt
, given by yt =

(
1 +

W−
t

Pt

)−1
W−

t

Pt
.

2 Analysis

We analyze the model in two steps. First, we consider a special parametric case that allows

us to characterize all equilibrium quantities in closed form. The special case we analyze is the

“elastic supply” case, that is, the limiting case where the supply of lendable shares is horizontal

at some level f(yt) = φ. (As we explain in Appendix A, this special case corresponds to a

particular specification for the cost of lending out shares.) Section 4 extends the analysis to

allow for an increasing function f(yt).
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µ̂i
t−rt
σ2
t

wi
t

− ft
σ2
t
τyt− ft

σ2
t

Figure 1: The optimal portfolio weight of investor i as a function of that investor’s perceived value

of
µ̂it−rt
σ2
t

.

2.1 Optimal portfolio and consumption

For a log investor the wealth-to-consumption ratio is constant and equal to
cit,s
W i

t,s
= ρ+π. Given

homothetic preferences, all agents of a given type choose the same portfolio independently

of their cohort, s; therefore we may write wit (rather than w
i
t,s). Additionally, a convenient

property of logarithmic utility is that the portfolio is myopic and maximizes the logarithmic

growth rate of an investor’s wealth under the investor’s beliefs,

wit = argmax
w

{
rt − ρ+ w

(
µt + ησt1{i=I} − rt + λt(w)

)
− 1

2
(wσt)

2

}
, (10)

where η is defined as

η ≡ µI − µD
σD

. (11)

Letting µ̂it ≡ µt + ησt1{i=I} denote the expected return on the stock as perceived by

investor i ∈ {I, R}, the optimal portfolio is

wit =


µ̂it−rt+ft

σ2
t

if µ̂it − rt + ft < 0

µ̂it−rt+τftyt
σ2
t

if µ̂it − rt + τftyt > 0

0 otherwise.

(12)

Figure 1 depicts equation (12), the optimal portfolio of investor i as a function of
µ̂it−rt
σ2
t

.

The figure shows the presence of an “inaction” region: for values of
µ̂it−rt
σ2
t

between − ft
σ2
t
and

− ft
σ2
t
τyt, the investor optimally chooses a portfolio weight of zero.
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One straightforward implication of equation (12) is that if investor R is actively shorting

(wRt < 0) then the expected excess rate of return per dollar shorted is positive even after

netting out the fee ft.
13

2.2 Equilibrium

It is useful to start by defining the wealth-weight ωit of investors of type i ∈ {I, R},

ωit ≡
νi
∫ t
−∞ πe−π(t−s)W i

t,sds

Wt

. (13)

To save notation, henceforth we refer to ωRt simply as ωt, and therefore ωIt = 1− ωt. Using
cit,s
W i

t,s
= ρ+ π, the goods-market and stock-market clearing requirements imply

Dt =
∑

i∈{I,R}

∫ t

−∞
νiπe−π(t−s)cit,sds = (ρ+ π)

∑
i∈{I,R}

∫ t

−∞
νiπe−π(t−s)W i

t,sds

= (ρ+ π)Wt = (ρ+ π)Pt. (14)

Taking logarithms gives d logDt = d logPt and therefore the stock market volatility equals

σt = σD. The implication of a constant stock volatility is convenient for obtaining closed-form

solutions. In Section 6.2 we discuss extensions of the model that allow for a time-varying

price-dividend ratio and volatility by introducing multiple stocks.

In an effort to obtain a closed-form solution we assume that the supply of lendable shares

is perfectly elastic at the rate φ:

Assumption 1 f(y) = φ > 0.

We maintain this assumption until Section 4.

A remarkable feature of the model is its potential for multiple equilibria. Before stating

formal conditions and results, it is instructive to sketch the argument of equilibrium multi-

13. This statement uses the assumption that agent R has the correct beliefs, and is a direct consequence of
the agent’s risk aversion. For a precise calculation, evaluate (12) with i = R, impose wR

t < 0, and re-arrange
to obtain −(µt − r − ft) = −(µ̂R

t − r − ft) = −wR
t σ

2
t > 0. The term −wR

t σ
2
t , which equals the absolute value

of the covariance of the stock’s return with the short seller’s portfolio, is the risk compensation to the agent
for taking a short position.

13



plicity, by focusing first on an equilibrium that involves active shorting (wRt < 0). In such an

equilibrium, the optimal portfolio holdings can be expressed as

wRt =
κt +

φ
σD

σD
(15)

wIt =
κt + η + φ

σD
τyt

σD
, (16)

while asset-market clearing requires

ωtw
R
t + (1− ωt)w

I
t = 1. (17)

Combining equations (15)–(17) leads to

κt = σD − (1− ωt) η −
φ

σD
(ωt + τyt(1− ωt)) . (18)

Equation (18) shows that the Sharpe ratio, κt, is a declining function of utilization, yt.

To compute the value of yt that clears the lending market, we note that in any equilibrium

involving wRt < 0 and wIt > 0 we must have

yt =
W−
t

W+
t

=
−wRt WR

t

wItW
I
t

= −w
R
t

wIt
× ωt

1− ωt
. (19)

Using (15) to compute the ratio
wR

t

wI
t
gives

yt = −
κt +

φ
σD

κt + η + φ
σD
τyt

× ωt
1− ωt

=
η − σD

1−ωt
− φ

σD
(1− τyt)

η + σD
ωt

− φ
σD

(1− τyt)
, (20)

where the last line follows from (18) after collecting terms and simplifying. Equation (20) is

quadratic in yt, and it may admit up to two solutions in the economically meaningful range

(0, 1). Proposition 2 below is devoted to studying this quadratic equation and confirming

that its roots correspond to valid equilibria with non-zero shorting (under some additional

assumptions on the parameters). The proposition further shows that when two such equilibria
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exist, there also exists one with zero shorting.

The intuition for the equilibrium multiplicity can be explained starting with equation (18),

which shows that the Sharpe ratio, κt, depends on utilization, yt. This dependence gives

rise to a feedback loop between κt and yt: A higher value of yt increases the rate of return

on a long position and strengthens investor I’s demand for the asset (equation (16)). This

increased demand lowers the Sharpe ratio to clear the market. The lower Sharpe ratio

strengthens the short-sellers’ appetite to borrow the stock and short it. In turn, the increased

shorting demand raises the utilization ratio, yt, increasing the effective return to I investors,

which further reduces the Sharpe ratio, etc.

We next provide a formal analysis of the full set of equilibria as a function of the wealth

share of rational investors, ωt. We start with a definition.

Definition 1 Define the constant ω∗
1 and the function F : R → R by

ω∗
1 ≡1− σD

η − φ
σD

, (21)

F (ω) ≡
(
σD − ω

(
(1 + τ)

φ

σD
− η

))2

− 4τ
ω2

1− ω

φ

σD

(
σD + (1− ω)

(
φ

σD
− η

))
. (22)

The next assumption provides a sufficient condition for the existence of multiple equilibria.

Assumption 2 Assume that η, φ, σD, and τ are such that

(1 + τ)
φ

σD
> η >

φ

σD
, (23)

ω∗
1 >

σD
(1 + τ) φ

σD
− η

> 0, (24)

and F has a unique root in the interval (0, 1), denoted by ω∗
2.

The following proposition guarantees that Assumption 2 can be satisfied.

Proposition 1 There exists an open set of positive values η, φ, σD, and τ that satisfy

Assumption 2.

The next proposition describes the equilibria in our economy.
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Proposition 2 Suppose that Assumptions 1 and 2 hold. Then ω∗
2 > ω∗

1 and the equilibria in

this economy are as follows.

i) If ωt ∈ (ω∗
2, 1] there is no short-selling in equilibrium. The equilibrium is unique and

the Sharpe ratio κt ≡ µt−rt
σD

is given by

κt =

 σD − (1− ωt) η if ωt > 1− σD
η

σD
1−ωt

− η if ωt ∈ (ω∗
2, 1− σD

η
]
. (25)

ii) If ωt ∈ [ω∗
1, ω

∗
2], then there are three equilibria. The first equilibrium continues to be

given by (25) and involves no short-selling. The second and third equilibria involve shorting

and utilization, yt, corresponds to the two roots y+ and y− of the quadratic equation

y

(
η +

σD
ωt

− φ

σD
(1− τy)

)
−
(
η − σD

1− ωt
− φ

σD
(1− τy)

)
= 0, (26)

which has two real roots y+ and y− in (0, 1). The Sharpe ratios in these equilibria are

κ±t = σD − (1− ωt) η −
φ

σD

(
ωt + τy±(1− ωt)

)
. (27)

iii) If ωt ∈ [0, ω∗
1), then the equilibrium is unique and involves shorting. In this case only

the larger of the two roots (y+) of equation (26) lies in the interval (0, 1), and the unique

equilibrium Sharpe ratio is given by κ+.

In all three cases the interest rate is given by

rt = ρ+ π + µD − δ − κtσD. (28)

Additionally, because κt, rt, and yt are functions of ωt, so is wRt , and the stochastic

process for ωt, dωt = µω,tdt + σω,tdBt, is Markovian with volatility σω,t = σω(ωt) and drift

µω,t = µω(ωt) given by

σω(ωt) = ωt
(
wRt − 1

)
σD, (29)

µω(ωt) = ωt
(
−µD + σ2

D − π + rt − ρ+ wRt
(
µt − rt + λt(w

R
t )
)
− wRt σ

2
D

)
+ νRδ. (30)
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Figure 2: Left: All possible equilibrium values of the Sharpe ratio, as a function of ωt. Right: The
utilization ratio, y(ωt), in all of the equilibria as a function of ωt.

Figure 2 illustrates Proposition 2. The left graph plots κ (ωt), the Sharpe ratio, as

a function of the wealth share of rational agents, ωt. As a benchmark, the line labeled

“Costless shorting equil.” depicts σD − (1− ωt) η, i.e., the Sharpe ratio that would obtain

in this economy in the absence of any shorting frictions (φ = 0). The curve “No shorting

equil.” depicts the Sharpe ratio in the equilibrium that involves no shorting for the values

of ωt that such an equilibrium exists. Similarly for the curves “Med. shorting equil.” and

“High shorting equil.”, which depict equilibria with shorting for the values of ωt that permit

such equilibria. To expedite the exposition of the results, we postpone a discussion of the

quantitative implications of the model until Section 6.2. The graphs in the current section

are meant to illustrate qualitative properties of the model.

The figure shows that, when ωt is larger than 1− σD
η
, the lines “Costless shorting equil.”

and “No shorting equil.” coincide, reflecting that all investors invest strictly positive amounts

in the stock market in this region of ωt.

When ωt becomes smaller than 1− σD
η

(but larger than ω∗
2), the rational investor puts

zero weight on stocks, but the shorting fee φ deters her from actively short-selling. Since only

the irrational investor is marginal in financial markets, the lines “Costless shorting equil.”

and “No shorting equil.” deviate from each other when ωt < 1 − σD
η
. In this region the

magnitude of the lending fee, φ, does not impact the Sharpe ratio directly (only by deterring

the R investors from shorting).

If ωt becomes smaller than ω∗
2 (but larger than ω∗

1) the economy exhibits three equilibria.

In the first equilibrium, there is still no shorting. In the second and third, there is active
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shorting by the rational investor. Across these three equilibria, the higher the extent of

shorting, the lower the Sharpe ratio. This is illustrated in the left graph of Figure 2.

Finally, if ωt becomes smaller than ω∗
1, then the equilibrium becomes unique and involves

shorting.14

Remark 1 The fact that there are three equilibria, one of which features no shorting, is an

implication of there being only two types of agents in the model. With more than two types of

agents, more than three equilibria can obtain. Also, in the case of multiple equilibria, all of

the equilibria can involve strictly positive short interest, as we show in Appendix B.

Remark 2 The presence of multiple equilibria implies that the aggregate demand curve for

the stock, D(κ) ≡ W+
t (κ, y(κ)) −W−

t (κ, y(κ)) is a backward-bending function of κ (where

y(κ) is implicitly defined by the first line of equation (20)). The market-clearing requirement,

D(κ) = 1, along with the fact that there are multiple values of κ such that D(κ) = 1, implies

that D(κ) is not monotonically declining, but instead is backward bending. As observed by

Gennotte and Leland (1990), a backward bending demand curve gives rise to discontinuous

changes in equilibrium. This necessary instability is illustrated in Figure 2: when the value of

the continuous-path wealth-share process ωt increases from below ω∗
1 to above ω∗

2, the processes

κt and yt experience discontinuous changes on the interval [ω∗
1, ω

∗
2] irrespective of how market

participants select between high, medium, and no shorting equilibria.15

2.2.1 Multiplicity and amplification

In our model multiplicity is a convenient way to illustrate a mutually reinforcing feedback

loop between the Sharpe ratio, κt, and utilization, yt. Before presenting general conditions

14. To see why there can be no equilibrium without shorting when ωt < ω∗
1 , assume otherwise. Indeed

assume that the R investor holds zero stocks and is not marginal in the stock market
(
wR

t = 0
)
. The

market clearing requirement, ωtw
R
t + (1− ωt)w

I
t = 1, along with wI

t = κt+η
σD

implies that the Sharpe
ratio would be κt =

σD

1−ωt
− η. Under this supposition, it would therefore be the case that µt − r + φ =

σD
(
κt +

φ
σD

)
= σD

(
σD

1−ωt
− η + φ

σD

)
< 0, where the inequality follows from ωt < ω∗

1 . Because µt−r+φ < 0,

equation (12) implies that the R investor would want to short the market, contradicting the assumption that
she is optimally holding zero stocks.
15. For instance, if the market participants always coordinate on the high shorting equilibrium, the jump

will occur when ωt = ω∗
2 , and if market participants coordinate on the no shorting equilibrium, the jump will

occur at ω∗
1 .
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that can lead to equilibrium multiplicity, in this section we confine attention to situations

where the shorting market is active, but the equilibrium is unique. We show that even when

the equilibrium is unique, the feedback loop between κt and yt is still present and becomes

the source of an “amplification” mechanism.

Specifically, assume that ωt < ω∗
1, so that the shorting market is active and the equilibrium

is unique. In this region, consider the impact of a change in the parameter η, which

governs the optimism of irrational investors, on the Sharpe ratio, κ. Next, note that

the market-clearing condition for lending (equation (20)) can be written compactly as

G (y, κ; η) = 0, where G (y, κ; η) ≡ y
(
κ+ η + φ

σD
τy
)
+ ωt

1−ωt

(
κ+ φ

σD

)
. By the implicit

function theorem, dyt = −Gκ

Gy
dκ− Gη

Gy
dη. In turn, totally differentiating equation (18) yields

dκt = −(1− ωt)dη − φ
σD
τ (1− ωt) dyt. Combining these two equations yields

dκt = Λdη + Φdκt, (31)

where Φ = φ
σD
τ (1− ωt)

Gκ

Gy
and Λ = − (1− ωt) +

φ
σD
τ (1− ωt)

Gη

Gy
.

The quantity Λ captures the “direct” effect of a change in η on κt. The presence of the

term Φ on the right-hand side of equation (31) illustrates the presence of an “amplification”

effect. Indeed, iterated substitution yields

dκt = Λdη + Φdκt = Λdη + Φ(Λdη + Φdκt)

= Λ (1 + Φ) dη + Φ2dκt

= Λ
(
1 + Φ + Φ2 + . . .

)
dη =

Λ

1− Φ
dη.

(32)

Lemma 2 in the Appendix shows that in the region where the equilibrium is unique, Φ lies

between 0 and 1. Equation (32) captures a “multiplier” effect. Specifically, an increase in η

has the direct effect of lowering the Sharpe ratio, since the optimists become more optimistic.

In addition, this direct effect starts a “spiral” by increasing utilization, yt, leading to a further

reduction in the Sharpe ratio by a fraction Φ < 1 of the original increase, further increasing

y, lowering κ by a further Φ2 of the original effect, etc. The expression for the fraction

Φ is given by the product of a) the impact of a change in utilization on the Sharpe ratio,
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− φ
σD
τ (1− ωt), and b) the impact of a change in the Sharpe ratio on utilization, −Gκ

Gy
.

The main difference between the region of multiplicity, ωt ∈ (ω∗
1, ω

∗
2), and that of uniqueness

(with non-zero shorting), ωt < ω∗
1, is that in the multiplicity region the feedback loop between

κt and yt becomes so strong that Φ > 1 for some values of y.16

3 Wealth-Share Dynamics

When multiple equilibria are possible, both the drift rate µω (ωt) of the wealth share of type

R investors and the expected logarithmic growth rate of their wealth are higher in equilibria

that feature higher yt, as the next proposition shows.

Proposition 3 For a fixed wealth share of the R-agents, ωt, consider two equilibria A and

B with yt,B > yt,A (and accordingly κt,B < κt,A). Then, the drift of investor R’s wealth share

in equilibrium i ∈ {A,B}, µω,i (ωt), satisfies µω,B (ωt) > µω,A (ωt). In addition, the drift of

the logarithmic growth rate of investor R’s wealth, given by

g(ωt) ≡
1

dt
E
[
d log(WR

t )
]
= rt − ρ+max

w≤0

{
w (κtσD + φ)− 1

2
(wσD)

2

}
, (33)

is higher in equilibrium B than in equilibrium A, i.e., gB (ωt) > gA (ωt).

Figure 3 provides an illustration of Proposition 3. The figure shows the stationary

distribution of ωt in the equilibrium associated with no shorting for values ωt ∈ (ω∗
1, ω

∗
2) and

in the equilibrium associated with the highest shorting, y+(ωt), for ωt ∈ (ω∗
1, ω

∗
2). The figure

shows that the stationary distribution of ωt has a higher mean in the high-shorting equilibrium

than in the no-shorting equilibrium. This is consistent with Proposition 3, which asserts a

higher (logarithmic) growth rate for the wealth of R investors in the second equilibrium.

When comparing a higher-shorting to a lower-shorting equilibrium, therefore, one must

account for two competing effects on the stationary mean of the Sharpe ratio κt. On the one

hand, for a fixed ωt the Sharpe ratio is lower in the high-shorting equilibrium. On the other

16. For instance, one can show that Φ > 1 for values of y in a neighborhood of y−, while Φ < 1 in a
neighborhood of y+. An implication is that — using the common definition of stability — the equilibria
corresponding to y+ and y = 0 are stable, while the equilibrium associated with y− is unstable.
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Figure 3: An illustration of Proposition 3. Simulating the model for the cases in which market
participants coordinate on the high-shorting and, respectively, the no-shorting equilibrium, the
figure depicts the stationary distribution of the wealth share of the rational investor, ωt, for the
economy of Figure 2.

hand, low values of ωt become infrequent in the high-shorting equilibrium. The first channel

makes the stationary mean of the Sharpe ratio lower in the high-shorting equilibrium, but

the second channel has the opposite effect. The overall effect on the stationary value of the

Sharpe ratio is ambiguous. This observation will become important in Section 6.2, when we

discuss the impact of an equilibrium shift on the price-dividend ratio of a small stock.

4 Arbitrary Supply Curve for Lendable Shares

In Section 2 we assumed a perfectly elastic supply curve for lending shares (f(y) = φ), which

allowed us to solve the model in terms of a simple, quadratic equation. Here we revisit

our main result, namely the existence of multiple equilibria, for an arbitrary (differentiable)

non-decreasing supply curve ft = f(yt). In addition, to allay possible fears that our results

are special to the discrete nature of the two-type distribution we considered so far,17 the

following proposition allows for a continuous distribution of beliefs (with connected support).

Proposition 4 Let h(y) ≡ f(y) (1− τy) . If there exists a value y ∈ [0, 1) with (a) h′(y) < 0

17. Note also that Appendix B illustrates multiple equilibria obtaining with three agent types.
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and (b) σ2
D < 1

4
(1 − y)2|h′(y)|, then there exist wealth distributions over beliefs for which

multiple equilibrium values of yt (and κt) obtain.

A key role in Proposition 4 is played by the function h(y). This function captures the

difference between the (proportional) fee paid by a short seller, f(y), and the (proportional)

lending income received by a long investor, τf(y) y. To understand why the condition

h′(y) < 0 for some y ∈ [0, 1) is necessary for multiple equilibria, suppose that there are (at

least) two equilibria yt,1 < yt,2. From market clearing in the spot market, in the second

equilibrium both long and short investors must choose a portfolio of larger absolute value

than in the first equilibrium: yt,1 < yt,2 =⇒ |wRt,1| < |wRt,2| and wIt,1 < wIt,2.
18

An immediate consequence is that wIt,1 − wRt,1 < wIt,2 − wRt,2. From the expressions for the

investors’ portfolio weights, (15) and (16), this inequality is equivalent to f(yt,1) (1− τyt,1) >

f(yt,2) (1− τyt,2), that is, h(yt,1) > h(yt,2). Since f is assumed differentiable, there exists

y ∈ (yt,1, yt,2) such that h′ (y) < 0.

Proposition 4 shows that condition (a) — when combined with condition (b) — is not

just necessary, but also sufficient for the existence of multiple equilibria, in the sense that

there exist (an open set of) wealth distributions over beliefs that ensure the existence of

multiple equilibria. We show that condition (b) is satisfied as long as investor disagreement

pertains to the idiosyncratic risk of a small stock relative to the market (see Remark 3 in

Appendix E). Henceforth, we always implicitly refer to condition (a) when we write the

“condition of Proposition 4.”

5 Empirical Evidence

5.1 Overview

The novel intuition of our model is the presence of a feedback effect between utilization (y)

and the Sharpe ratio (κ). This feedback loop can lead to equilibrium shifts that empirically

18. The fact that wR
t < 0 along with equations (17) and (19) imply that yt =

ωt|wR
t |

1+ωt|wR
t | , which is an

increasing function of |wR
t |. Accordingly, yt,1 < yt,2 implies that |wR

t,1| < |wR
t,2|. In turn, by market clearing,

wI
t =

1+ωt|wR
t |

1−ωt
, and therefore |wR

t,1| < |wR
t,2| implies wI

t,1 < wI
t,2.
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manifest themselves as jumps in utilization, irrespective of how agents coordinate on one

equilibrium or another (Remark 2). Moreover, Proposition 4 states a key condition for the

possibility of such jumps to occur, namely that the function h(y) = f(y)(1 − τy), which

reflects the difference between the fee paid by the short investor and the income received by

the long investor, be declining for some y.

The next section shows that the assumption of a (locally) declining h(y) is empirically

plausible. In addition, we present evidence that the time series for utilization does exhibit

jump-like behavior. Moreover, as predicted by the model, the incidence of utilization jumps

for a given stock is significantly correlated with whether the estimated h(y) (for that stock)

has a declining segment.

5.2 Data description

Daily returns and market capitalization data are from the Center for Research in Security

Prices (CRSP). Our source for stock lending fees and short interest is IHS Markit. These

data start in January 2006.19 Markit collects self-reported data on actual rates on security

loans from active participants in the securities lending market. The data set covers roughly

30,000 securities, and contains 16 million unique stock-day observations.

We match the Markit data to the CRSP database and retain only common stocks of

domestic companies. Furthermore, to ensure that our results are not driven by micro-cap

stocks, for our main empirical results we only retain observations that correspond to stocks

that are Russell 3000 constituents (on the day of observation), which we identify using the

Datastream Monthly Index Constituents file. This reduces our number of observations to 10

million.

We follow Daniel, Klos, and Rottke (2022) and use the quantity “Indicative Fee” as our

measure of the marginal cost of borrowing, which is the expected borrowing cost (expressed

in percentage points per year) on a given day.20 In addition to these data on fees, we use

19. The Markit data of other studies (Daniel, Klos, and Rottke (2022) and Drechsler and Drechsler (2014))
starts in 2004 and contains observations at a weekly frequency. The data set that was provided to us by
Markit contains daily observations that start in 2006. Markit confirmed in an email that the pre-2006 data
are no longer available.
20. Markit uses both borrowing costs between lenders and prime brokers as well as rates from hedge funds to

produce this estimate of the current market rate. As discussed in Daniel, Klos, and Rottke (2022), Indicative
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two additional data variables from Markit: a) “Daily Cost of Borrow Score” (DCBS) and b)

daily utilization. The DCBS takes integer values between one and ten and is a “bucketed

score (1-10) that reflects the cost to borrow the stock charged by the lenders from the Prime

Brokers in the wholesale market, where 1 reflects a cheap or a GC (“general collateral”) stock

and 10 reflects an expensive or a special stock.”21 The literature has used this score as a

way of identifying stocks that are on special. In the data, DCBS values equal to one are

by far the most prevalent ones (74% of our sample) and tend to exhibit a high degree of

persistence.22 For some of our empirical results, we focus on stocks that are hard to borrow

and we drop observations with DCBS equal to 1, since our model applies predominantly to

stocks where lending frictions are non-trivial. Markit’s “Utilization by Quantity” is computed

as the fraction of assets on loan from lenders divided by the total lendable quantity. This

variable takes values between 0 and 1 and corresponds to the variable yt in our model.

5.3 Empirical results

Tables I.1 and I.2 in Appendix I provide some summary statistics on the lending fees. To

expedite the presentation of the results that pertain to our paper, here we simply summarize

our main findings from these tables as follows. The median lending fee ranges from 0.35%

per annum (for stocks in the largest market-capitalization quintile) to 0.41% per annum

(for stocks in the smallest market-capitalization quintile). However, lending fees exhibit

substantial cross-sectional and time-series variation. The 99th percentile of all lending-fee

observations exceeds 7% for stocks in four out of the five market-capitalization quintiles.

When we examine lending fees at the individual stock level, we find that 31% of Russell

3000 constituents exhibit a lending fee in excess of 1% for 5 out of 100 trading days, while

18% of Russell constituents exhibit lending fees in excess of 3% for 5 out out of 100 trading

days. In addition, 45% of Russell constituents exhibit a fee in excess of 5% at some point in

Fee can be interpreted as a proxy for the marginal cost of short selling. Markit also reports “Simple Average
Fee,” which is the average fee over all outstanding contracts for a particular security. Following Daniel, Klos,
and Rottke (2022), on each stock-day, we take the Indicative Fee as our measure of the stock’s lending fee
and (in the very rare instances) where the Indicative Fee is not reported, we use Simple Average Fee. This
substitution applies to only 676 observations out of the roughly 10 million observations.
21. IHS Markit Securities Finance Quant Summary, July 2020 edition. Available on WRDS.
22. If a stock has a DCBS value of one on any given day, the probability that it has a DCBS value of one

the next day is 98.83%
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Figure 4: Relationship between shorting fees and utilization. Non-parametric series regression
of daily shorting fees on utilization, pooled across Russell 3000 constituents. Daily shorting fees
from 2006 to 2021 are from Markit and are reported as annualized percentage rates. (For instance,
0.05 on the y axis means 5% per annum.) Error bars denote 95% confidence intervals. Because
this estimation utilizes several millions of observations, the standard errors of the estimates are
negligible.

the sample. This is consistent with results reported in Engelberg, Reed, and Ringgenberg

(2018), who write “loan fees can increase to levels that significantly decrease the profitability

of nearly any trade.”

We start the presentation of our main empirical findings with Figure 4, which examines

the relationship between utilization and shorting fees. Specifically, the solid line pools all

daily observations across all Russell-3000 stocks and depicts the estimates of a non-parametric

regression of daily shorting fees (expressed in annual percentage terms) on utilization.23 The

dashed line depicts results from the subsample that only includes observations of stocks with

a DCBS code of 2 or above, stocks to which we refer as being on special. As both plots

show, the relationship between shorting fees and utilization is nonlinear, with a region that is

approximately constant for low and intermediate values of utilization and a steeply increasing

region for high values of utilization.

We next use the estimates from the non-parametric regression analysis to compute

23. We estimate a third order basis spline of fees on utilization and depict the point estimates and standard
errors at 0.05 increments of utilization, along with standard errors. For the computations we use the command
npregress series in Stata. Standard errors are produced using the command margins and the ∆ method.
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Figure 5: h′(y), pooled non parametric estimates. Estimated marginal effects are derived from
a non-parametric series regression of daily shorting fees f on utilization, y. Marginal effects are
computed using the formula h′(y) = f ′(y) (1− τ y)− τf(y). Short interest is based on utilization
data from Markit. Sample consists of daily observations of shorting fees and utilization, pooled
across Russell 3000 constituents from Markit for the period 2006 to 2021. Standard errors are
derived from the standard-error estimates of (1− τy)f̂ ′(y) and τ f̂(y), while assuming a worst-case
correlation of −1 between these two quantities. The parameter τ is set to 0.8.

estimates of h′(y) via h′(y) = f ′(y) (1− τ y)− f(y)τ . We calibrate τ to a value of 0.8 based

on the industry practice of rebating about 80% to the mutual funds that provide their shares

for lending.24 Figure 5 depicts these estimates, along with an upper-bound estimate of the

95% confidence interval.25 The figure shows that h′(y) is statistically significantly negative

for several y values between 0 and 0.4. Therefore, when we pool all observations, we can

statistically reject the null hypothesis that h′(y) is always positive.

The two plots of Figure 5 illustrate the results of a single non-parametric regression on

pooled data to obtain more precise estimates. As a robustness check, in Appendix I we

estimate a separate non-parametric regression of fees on utilization for each stock and compute

a stock-specific h′(y). Appendix I shows that the (cross-sectional) average of the estimated

h′(y) is negative (and statistically significant) for low values of y.26 We also note that the

24. Source: “Unlocking the potential of your portfolios: iShares Security Lending.” Blackrock, 2021.
Available at https://www.ishares.com.
25. The standard errors are computed using Stata’s estimates for the variance of the estimates f(y) and

f ′(y) and a worst-case assumption that the correlation between the estimates of f̂ and f̂ ′ is −1 to provide an
upper bound on the variance of the estimate.
26. As can be expected, the estimation of a separate function h′(y) for each stock increases the estimation-

error bounds on h′(y) and therefore the range of (statistically significant) negative y-values becomes smaller
than in Figure 5.

26

https://www.ishares.com/us/literature/brochure/securities-lending-unlocking-portfolios-en-us.pdf


(a) Utilization (b) Lending fee

Figure 6: QQ-plots of weekly changes in utilization and lending fees. Left panel: An AR(1) of
utilization is estimated at the stock level at a weekly frequency. The residuals of each time series
are divided by their standard deviation and then pooled across all stocks. The quantiles of the
standardized-residual distribution are then plotted against the quantiles of the standard normal
distribution. Right panel: Same as the left panel, but for lending fees rather than utilization. Both
utilization and lending fee data are provided by Markit and cover the period 2006 to 2021.

analysis so far is based on the model assumption that fees are a deterministic function of

utilization, ft = f(yt), and any residuals (in the data) are the result of orthogonal sampling

and surveying errors in the measurement of the indicative lending fee. At the end of this

section we revisit this orthogonality assumption.

Our next set of results pertains to the implications rather than the assumptions of

our model. We start with the most basic empirical implication: due to the possibility of

equilibrium shifts, utilization may exhibit jumps.

Figure 6 provides an informal way to visualize abrupt shifts in utilization in the data.

For each Russell 3000 stock, we estimate a separate AR(1) process for weekly utilization, so

that both the long-run mean and the persistence of utilization can vary at the stock level.

We then normalize the innovations (i.e., the residuals of the AR(1) estimation) by their

standard deviation. Assuming that utilization (at the stock level) follows an AR(1) process

with normal, homoskedastic increments, these normalized residuals follow a standard normal

distribution. The left panel of Figure 6 shows that this is not the case. The quantile-quantile

plot of the standardized residuals clearly shows that the innovations to utilization exhibit

remarkably fat tails (the excess kurtosis is 26) with a non-trivial mass of the residuals in the
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Table 1: Determinants of Utilization Jump Rate

(1) (2) (3) (4) (5) (6) (7)

1Fail − Satisfy -5.14∗∗∗ -4.78∗∗∗ -3.62∗∗∗ -5.28∗∗∗ -5.00∗∗∗ -3.85∗∗∗ -2.96∗∗∗

(-5.63) (-5.67) (-4.30) (-5.79) (-5.51) (-4.37) (-3.82)

Fee Ctrl No Yes No No No No Yes

Size Ctrl No No Yes No No No Yes

Equity Market Ctrls No No No Yes No No Yes

Financial Ratios No No No No Yes No Yes

Exchange Ctrls No No No No No Yes Yes

N 1975 1975 1975 1975 1975 1975 1975

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The variable 1Fail − Satisfy is the indicator function that takes the value one when a stock belongs in
the fifth quintile sorted on the t-statistic of h′(y), as described in the text. In the regressions we
include a constant and an additional indicator variable taking the value one if the stock belongs to in
quintiles 2 through 4. “Fee Ctrls” indicates whether the time-series average shorting fee is included
as a control. “Size Ctrls” indicates whether the stock’s market capitalization is included as a control.
“Equity Ctrls” indicates whether the stock’s variance of returns and time-series average turnover
are included as controls. “Fin Ratio Ctrls” indicates whether the stock’s book-to-market ratio and
leverage are included as controls. “Exchg Ctrls” indicates whether an indicator for NASDAQ traded
stocks and an indicator for stocks with traded options are included as controls. Standard errors are
heteroskedasticity-robust.

range of −20 standard deviations.27,28 We note that utilization is not the only fat-tailed time

series. The right subplot of Figure 6 shows that the standardized residuals of the lending-fee

time-series are similarly fat tailed (the excess kurtosis is 75).

We next turn to the cross-section of stocks and examine the connection between the

incidence of jumps and the condition that h′(y) < 0 for some y (Proposition 4). To test this

connection, we start by estimating a stock-specific jump rate as follows. We fix a cutoff U

above which we consider the weekly AR(1) residual in a stock’s utilization as economically

large. We refer to a week during which the absolute value of the change in utilization exceeds

U as a jump event. (Results are quite similar if we consider the raw weekly changes in

27. The Jarque-Bera test rejects normality with a p-value essentially equal to zero.
28. The test proposed by Aı̈t-Sahalia and Jacod (2009), which tests whether the discretely observed

utilization data emanated from a continuous-sample-path diffusion process using daily data, rejects the null
hypothesis of continuous sample paths for 85% of Russell 3000 constituents.
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Table 2: Summary statistics, averaged within t-statistic quintiles.

Quintile
1 2 3 4 5

Shorting Fee 0.063 (0.097) 0.041 (0.075) 0.044 (0.070) 0.043 (0.080) 0.057 (0.087)
Size Quintile
1 270 (68.4%) 275 (69.6%) 262 (66.3%) 257 (65.1%) 220 (55.7%)
2 91 (23.0%) 80 (20.3%) 83 (21.0%) 76 (19.2%) 86 (21.8%)
3 19 (4.8%) 29 (7.3%) 31 (7.8%) 32 (8.1%) 48 (12.2%)
4 14 (3.5%) 7 (1.8%) 14 (3.5%) 19 (4.8%) 27 (6.8%)
5 1 (0.3%) 4 (1.0%) 5 (1.3%) 11 (2.8%) 14 (3.5%)

Var of Returns 0.003 (0.008) 0.004 (0.035) 0.003 (0.004) 0.002 (0.003) 0.003 (0.016)
Turnover 0.012 (0.013) 0.013 (0.016) 0.014 (0.019) 0.014 (0.020) 0.016 (0.017)
Debt/Total Assets 0.206 (0.228) 0.226 (0.232) 0.218 (0.220) 0.232 (0.236) 0.236 (0.240)
Log Book/Market -1.089 (1.035) -0.995 (0.926) -1.070 (0.973) -1.017 (0.949) -1.087 (0.991)
1Option 0.113 (0.299) 0.136 (0.320) 0.128 (0.319) 0.179 (0.367) 0.239 (0.411)
1NASDAQ 0.709 (0.455) 0.701 (0.458) 0.742 (0.438) 0.676 (0.469) 0.615 (0.487)

Stocks are sorted into five quintiles based on the t-statistic of h′(y), as described in the text. The
table presents within-quintile averages of the control variables included in Table 1. For the variable
“Size Quintile”, the number in parentheses indicates the percentage of the stocks in that quintile.
For all other variables, the number in parentheses indicates the standard error.

utilization rather than the AR(1) residuals.) The cutoff U corresponds to an unusually large

(above two standard deviations) weekly change in utilization. We define the jump rate as

the ratio of the number of jump events to the total number of weeks over which we observe

the stock, which we then annualize for ease of interpretation. Given our interest in stocks

that are on special, we confine attention to Russell 3000 stocks that have a DCBS score

larger than one for at least 50 trading days. To gauge whether a stock is likely to satisfy

the condition of Proposition 4 or not, we obtain a stock-specific non-parametric estimate of

h′(y), its standard error, and the associated t-statistic at various levels of utilization.29 We

then compute for each stock the lowest value of the t-statistic across utilization levels and

sort stocks into five quintiles based on this quantity.30 To mitigate the risk of misclassifying

stocks as satisfying (failing) the condition of Proposition 4, when in fact they fail (satisfy)

it, in all of our regressions we compare stocks in the first and fifth quintiles. (The mean

(median) value of t for stocks in the first quintile is −11.6 (−9.4) and the mean (median)

29. For the estimation of h′(y) at the stock level, we use the kernel estimator described in Appendix I. For
each stock, we estimate h′(y) at 11 values of shorting utilization (corresponding to each of the nine deciles, as
well as the 5th and 95th percentiles of each stock’s y).
30. We focus on the minimum value of the t-statistic because the null hypothesis is that h′(y) ≥ 0 for all y.
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Table 3: Alternative Specifications of the Utilization Jump Rate

Dependent variable: Utilization Jump Rate

(1) (2) (3)

Panel A: Baseline Specification

1Fail − Satisfy −2.96∗∗∗ −2.25∗∗∗ −2.03∗∗

(−3.82) (−2.76) (−2.47)

N 1975 1975 1975

Panel B: Demand-Driven Jumps in Utilization

1Fail − Satisfy −1.62∗∗∗ −1.27∗∗ −1.11∗∗

(−3.32) (−2.51) (−2.18)

N 1975 1975 1975

Notes: t-statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The table re-runs the specification (7) of Table 1 for alternative definitions of the jump rate.
In Column (1), jumps are identified as trading weeks during which the absolute value of the
unanticipated change in shorting utilization exceeds the full-sample 95th percentile. In Columns (2)
and (3), the cutoff is set at the 99th and 99.5th percentiles, respectively. In Panel A, all trading weeks
exceeding the column-specific cutoff are considered jumps. In Panel B, only jumps in utilization
that are demand-driven are considered. We label a jump as demand-driven if the absolute value
of the percentage change in shorted shares exceeds the absolute value of the percentage change in
lendable shares. Standard errors are heteroskedasticity-robust.

value of t for stocks in the fifth quintile is 7.8 (6.2).)

Table 1 provides a first test of our theory. We regress the utilization jump rate on an

indicator variable taking the value one if the stock belongs in quintile 5, an indicator variable

taking the value one if the stock belongs to quintiles 2 through 4, and a constant. (As a

result, quintile 1 is the base quintile.) We report the coefficient and standard error of the

first indicator variable as 1Fail − Satisfy, reflecting the notion that stocks in the fifth quintile

are quite likely to fail the condition of Proposition 4, while stocks in the base quintile (first

quintile) are likely to satisfy it. Column (1) of the Table reports the results of this regression

without any additional controls. Columns (2)–(6) add different groups of control variables to

this regression.31 To save space, in the text we simply list the controls, while Table I.3 in

the appendix contains the estimated coefficients and t-stats of these controls. Specifically,

Column (2) includes the stock’s average shorting fee as a control. Column (3) adds four

31. The controls are motivated by the empirical literature. (See, e.g., Blocher, Reed, and Van Wesep (2013).)
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dummy variables corresponding to the quintile of the market-capitalization distribution that

the stock belongs to. Column (4) includes the stock’s weekly-return variance and average

turnover.32 Column (5) includes a stock’s average log-book-to-market ratio and leverage ratio

as additional controls. Column (6) includes two dummy variables, namely whether the stock

is traded on the NASDAQ and whether the stock has traded options. Column (7) includes

all controls together. Irrespective of the specification, the coefficient on the indicator variable

1Fail − Satisfy is always negative and significant at the 1% significance level, indicating that the

stocks that are quite likely to fail the condition of Proposition 4 (quintile 5) exhibit a lower

jump rate compared to stocks that are likely to satisfy the condition (quintile 1).33 The fact

that the inclusion of controls does not impact significantly the coefficient on the indicator

variable 1Fail − Satisfy suggests that the various stock characteristics are more or less unrelated

to the quintile to which a stock belongs. Table 2 confirms this conclusion by showing that

stocks in different quintiles have roughly similar characteristics.

Table 3 reports robustness results when we use alternative definitions of the jump rate.

The top panel of Table 3 repeats the regression of Column (7) of Table 1 but for progressively

higher jump cutoffs U . The bottom panel of Table 3 performs a similar exercise to the

top panel of the table, except that in order to define a jump in utilization, we impose an

additional property of the model: we confine attention to jumps in utilization whereby the

absolute value of the percentage change in shorted shares (the numerator of utilization) is

larger than the absolute value of the percentage change in lendable shares (the denominator of

utilization).34 Taken together, Table 3 confirms that the results of Table 1 are not sensitive

to the precise definition of the jump rate. Finally, to allow for potential time variation of

utilization volatility at the stock level, we also used the rolling, jump-robust estimator of the

32. Turnover is defined as daily volume divided by market capitalization. Source: CRSP.
33. Results are qualitatively unchanged if we regress the utilization jump rate on the t-statistic that we use

to form the quintiles instead of forming quintiles. Results are also unchanged if we form groups based on
cutoffs of the t-statistics and form three groups based on whether the value of t is below −3, between −3 and
3, and above 3. Similarly, if we include four indicator variables, one corresponding to each quintile of the t
value (rather than grouping stocks in quintiles 2–4 together) the results are essentially identical.
34. Inside the model, utilization is equal to the ratio of shorted shares to lendable shares; in turn lendable

shares are equal to one plus the absolute value of shorted shares (this is the market clearing condition).
Therefore, the absolute value of the percentage change in shorted shares must exceed the absolute value of
the percentage change in lendable shares. By restricting attention to jumps that satisfy this requirement, we
exclude changes in utilization due, for example, to some institutional client giving permission to short shares.
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Figure 7: Volatility of Shorting Utilization. For each stock, we fit an AR(1) model for weekly
shorting utilization, extract the residuals, and calculate the 10-week rolling standard deviation of
residuals. We plot the cross-sectional average of this standard deviation of shorting utilization,
along with a 95% confidence interval. The two vertical lines denote the beginning and end of the
ten week period following the SEC announcement on September 17, 2008.

local volatility of utilization from Wang and Zheng (2022) to identify jump events as trading

days where the absolute value of the change in utilization exceeds four times the estimated

local utilization volatility of each stock. Using this alternative definition of the jump rate,

the coefficient on 1Fail − Satisfy in Column (7) of Table 1 remains significant (t-stat: −3.65).

The evidence in Tables 1 and 3 is cross-sectional in nature. This leaves open the possibility

that the cross-sectional differences in jump intensity are driven by some omitted factor. To

address this issue, we next report results from regressions that exploit a structural break in

our sample. This structural break, which we describe shortly, allows us to show that the

condition of Proposition 4 is useful at predicting within-stock changes in utilization jump

rates (i.e., it effectively allows us to control for stock fixed effects).

The structural break in our sample is associated with the 2008 modification in SEC’s

regulation SHO that strengthened the regulatory delivery requirements on short selling.35

Figure 7 provides a visual impression of how this regulatory change altered the time series

of the volatility of shorting utilization. Specifically, at each point in time we compute a

35. On September 17, 2008, the SEC released Order No. 34-58572, which imposed enhanced delivery
requirements as well as penalties for having a fail-to-deliver position on any equity security. Specifically,
Rule 204T requires that: (i) fail-to-deliver positions must be closed on the next settlement day, and (ii) “the
participant and any broker or dealer from which it receives trades for clearance and settlement [...] may
not accept a short sale order in the equity security from another person, or effect a short sale in the equity
security for its own account [...] until the participant closes out the fail to deliver position”.
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ten-week rolling standard deviation of utilization innovations for each stock and report the

cross-sectional mean along with a 95% confidence interval. The figure shows that between

July 2006 and September 2008 (the portion of our sample before the enactment of the new

regulation) the volatility of the shorting utilization is markedly higher than in the 14 years

that follow. The drop in utilization volatility occurs concurrently with the enactment of

the regulation, and the volatility remains at these low levels long after the end of the great

financial crisis (GFC), which suggests that the drop is not a temporary reaction to the

financial turmoil of the GFC. (To interpret this drop in volatility through the lens of the

model, in Appendix Section G we extend the baseline model to allow for an additional

non-pecuniary cost of short selling, which we interpret as a regulatory cost; we show that a

rise in this cost is consistent with a drop in the volatility of utilization.)

Table 4 examines the different behavior of stocks that likely satisfy (quintile 1) and fail

(quintile 5) the condition of Proposition 4 around the regulatory change. The dependent

variable in Column (1) is the difference in a stock’s utilization volatility between the pre-

regulation and the post-regulation sample. The regressors are the same indicator variables as

in Column (1) of Table 1 and a constant. Column (1) of Table 4 shows that the constant is

negative and significant, indicating that utilization volatility dropped significantly for the base

quintile (quintile 1). By contrast, the indicator variable 1Fail − Satisfy is insignificant, indicating

that the utilization volatility dropped by similar amounts for stocks that are likely to fail

and satisfy the condition of Proposition 4. In other words, the condition of Proposition 4 has

no power for explaining within-stock changes in the volatility of utilization. The situation is

different for the utilization jump rate. In Column (2), we use the same regressors, but the

dependent variable is the difference in a stock’s utilization jump rate between the pre- and

the post-regulation sample. (We keep the jump cutoff, U , unchanged in the two subsamples.)

The pattern in Column (2) is the opposite from Column (1). The constant is insignificant;

the indicator variable 1Fail − Satisfy, however, has a negative and significant coefficient. The

insignificant constant indicates that stocks in the base quintile (stocks that likely satisfy the

condition of Proposition 4) experienced an insignificant change in the utilization jump rate,

while the significant indicator variable implies that the stocks that likely fail the condition of

Proposition 4 experienced a significant drop in the jump rate. Columns (3)–(5) show that the
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conclusions of Column (2) for the jump rate continue to hold when we include controls for the

change in the level of utilization (Column (4)) and the change in the volatility of utilization

(Column (5)), as well as these two controls together (Column (6)). That is, comparing two

stocks that experienced similar changes in their level and volatility of utilization, the stocks

that likely satisfy the condition of Proposition 4 (quintile 1) experienced a significantly smaller

(and insignificant) drop in their utilization jump rate compared to stocks that likely fail the

condition.

It is intriguing that stocks in the base quintile (stocks that likely satisfy the condition of

Proposition 4) experience a significant drop in utilization volatility (and similar in magnitude

to the stocks that likely fail the condition), but experience only a small and insignificant

change in the utilization jump rate. To interpret this finding, we start by noting that in

our model utilization is given by the sum of two components: (a) a continuous diffusion

(for all stocks) and (b) a pure-jump process (only for stocks that satisfy the condition of

Proposition 4). Because our observations are in discrete time, we identify jumps as utilization

changes that exceed a large cutoff, U , in absolute value. This identification implies the

possibility of both type-I errors (unusually large realizations of the diffusive component that

are not jumps) and type-II errors (jumps that are missed because of an offsetting realization

of the diffusive component). According to our model, a rise in the regulatory cost reduces

the volatility of the diffusive component across all stocks (Appendix G), and by implication

reduces both type-I and type-II errors of identifying a jump. The reduction in type-I errors

implies a reduction in the measured jump rate for all stocks. However, for stocks that

satisfy the condition of Proposition 4 there is an opposing effect, namely the reduction in

type-II errors (a larger number of correctly identified jumps), thus resulting in a smaller,

indeed insignificant, effect on the measured jump rate. We elaborate on this point further in

Appendix C, where we also provide a graphical illustration of the argument.

We conclude this section with a robustness check pertaining to the estimation of h′(y). In

the model the only shocks are exogenous dividend shocks, which cause shifts in the wealth

distribution, the Sharpe ratio, and the demand for shorting shares. Further, the relation

between the fee and the utilization is deterministic: ft = f(yt). In the data, there is a

residual εt in that relation, ft = f(yt) + εt, which throughout this section we have treated as
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Table 4: Evidence from the regulatory change

Dependent variable

∆ Volatility ∆ Jump Rate

(1) (2) (3) (4) (5)

1Fail − Satisfy −0.02 −4.24∗∗∗ −4.87∗∗∗ −3.59∗∗ −3.00∗∗

(−0.81) (−2.61) (−2.92) (−2.40) (−2.04)

Constant −0.09∗∗∗ −2.07 −0.92 0.63 −0.28
(−3.86) (−1.57) (−0.62) (0.51) (−0.22)

N 717 717 717 717 717

Notes: t-statistics in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The dependent variable in Column (1) is the change in each stock’s volatility of utilization (from
before to after the regulatory change). In Columns (2)–(5) the dependent variable is the change in
each stock’s utilization jump rate (using the same jump-cutoff, U , before and after the regulatory
change). The regressors in Columns (1) and (2) are the same indicator variables as in Column (1) of
Table 1. Column (3) adds the change in the level of shorting utilization as an additional control to
the specification of Column (2). Column (4) adds the change in the volatility of shorting utilization
to the specification of Column (2). Column (5) adds changes in both the level and the volatility of
shorting utilization to Column (2). Standard errors are heteroskedasticity-robust.

(orthogonal) measurement error caused by sampling the indicative lending fee. However, if

one were to think of this εt as a non-orthogonal supply shock, the empirical estimates of f ′(y)

could be biased upwards or downwards. The model offers a relatively simple approach to

consistently estimate ∆ft
∆yt

even in the presence of such supply shocks. The idea is to exploit the

discontinuities that occur around equilibrium shifts:36 Assuming that dividend shocks and the

shock to the lending fee, εt are continuous processes, jumps in yt can only be the result of an

equilibrium shift. We can therefore measure ∆ft
∆yt

=
ft+−ft−
yt+−yt−

=
f(yt+ )−f(yt− )+εt+−εt−

yt+−yt−
≈ f ′(yt−),

where we used the continuity assumption εt+ = εt− . In other words, around jump events

in utilization one is able to identify f ′(yt). Figure I.2 in the Appendix repeats the exercise

of Figures 4 and 5 except that the changes in the numerator and denominator of ∆ft
∆yt

are

evaluated on the weeks where yt exhibits jump events, as identified earlier. The figure shows

that the derived function h′(y) is small and negative for most values of y. This suggests that

the conclusion of Figures 4 and 5 is not the result of a bias due to joint-determination issues.

36. The idea is reminiscent of how Sweeting (2006) uses multiple equilibria to resolve identification issues.
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6 Extensions: The Price-Dividend Ratio

In the baseline model, the price-dividend ratio and the volatility of the stock market are both

constant and independent of the equilibrium on which the investors coordinate. This is an

implication of a) logarithmic utility over intermediate consumption, which implies a unitary

intertemporal elasticity of substitution (IES) and b) a single asset in positive net supply. In

this section we consider two extensions of the baseline model that relax each of these two

assumptions. The goal is to show how the dynamics of the wealth share, ωt, can lead to

situations where the price-dividend ratio is comparatively higher when agents coordinate on

not shorting (whenever multiple equilibria are possible) rather than maximal shorting. This

result obtains even though the Sharpe ratio is typically higher in the no-shorting equilibrium

for any fixed ωt.

6.1 Non-unitary elasticity of substitution

In Appendix D we generalize the baseline model by retaining the assumption that investors

have unit risk aversion, but employing an Epstein-Zin-Weil specification to allow the IES

to differ from one.37 The unit risk aversion assumption allows us to preserve the “myopic”

mean-variance portfolio equations (12). As a result, equations (18) and (20), which give

the Sharpe ratio (κt) and utilization (yt), respectively, remain unchanged, along with the

possibility of multiple solutions.38 However, by removing the unit-IES assumption, the

consumption-to-wealth ratios of investors R and I are no longer constant; instead they

depend on each investor’s perceived evolution of their future wealth-growth rates. In turn,

the dividend-to-price ratio is time varying, since it is a wealth-weighted average of the two

consumption-to-wealth ratios.39

Figure D.1 in the Appendix compares the price-dividend ratio where investors coordinate

37. Specifically, we use the continuous-time version of Epstein-Zin-Weil utilities, proposed by Duffie and
Epstein (1992) and Schroder and Skiadas (1999).
38. While the structure of the equations for κt and yt remains unchanged, one complication is that the

volatility of the stock market is no longer σD, but rather is an endogenous function of ωt. To obtain this
function, one needs to solve a system of ordinary differential equations that are provided in the appendix.
39. This statement follows from a standard market-clearing argument. To see this, let CR

t and CI
t denote the

total consumption of the two investor types,WR
t andW I

t their aggregate wealth, and gRt and gIt their respective
consumption-to-wealth ratios. Dividing the consumption-market clearing requirement, CI +CR = Dt, by the
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on the no-shorting equilibrium with the price-dividend ratio where investors coordinate on

the highest shorting equilibrium (whenever ωt is in the range where multiple equilibria are

possible). The figure shows that, if IES < 1, the price-dividend ratio is higher when investors

coordinate on the no-shorting outcome, which we explain as follows. In the equilibrium where

the shorting market is active whenever possible both agent types (rational and irrational)

believe that their own wealth-growth rate will be higher compared to the equilibrium where

the shorting market is inactive: An active shorting market allows investors an effective way

to trade on their views. Since each agent believes that the other type of agent is wrong, she

anticipates that her own wealth-growth rate will be higher when she can trade with the other

type in an active shorting market.40 When the income effect dominates the substitution effect

(IES < 1), the perception of high future wealth-growth rates in the high-shorting equilibrium

raises the consumption-to-wealth ratio of both investors. As a result, for any fixed wealth

weights ωt and 1− ωt, the dividend-to-price ratio is higher — equivalently, the price-dividend

ratio is lower — in the equilibrium in which coordination on the shorting equilibrium is more

prevalent.41

The above discussion provides a first illustration of the role of anticipated wealth dynamics

for the determination of the price-dividend ratio.42 The discussion also illustrates that the

price-dividend ratio may be higher in the no-shorting equilibrium, even though the Sharpe

ratio is also higher. Admittedly, this outcome relies on general equilibrium effects, and in

stock-market clearing requirement WR
t +W I

t = Pt, implies

Dt

Pt
=
CI

t

Pt
+
CR

t

Pt
=

CI
t

W I
t

W I
t

WR
t +W I

t

+
CR

t

WR

WR
t

WR
t +W I

t

= (1− ωt)g
I
t + ωtg

R
t .

40. In Section 3 we proved this result for agent R, and the argument holds mutatis mutandis through the
lens on agent I.
41. This conclusion is reversed if the IES is larger than one. The literature is not conclusive on whether the

IES is above or below one. See, e.g., Beeler and Campbell (2012) and the response by Bansal, Kiku, and
Yaron (2012).
42. As an additional illustration of the role of wealth dynamics, in Appendix D we present a version of the

model where the equilibrium switches frequently between high- and no-shorting on a partition of ωt ∈ [ω∗
1 , ω

∗
2 ]

into equal-sized intervals. The key takeaway from that exercise is that because ωt is more volatile on the
sub-intervals where the market coordinates on high shorting, market participants expect that ωt will end
up spending more time on sub-intervals where the market coordinates on no shorting. As a result the
price-dividend ratio in the economy of frequent equilibrium switches resembles more closely the economy
where the market always coordinates on no shorting rather than the economy where the market coordinates
on high shorting.
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particular the fact that the interest rate is lower in the no-shorting than in the high-shorting

equilibrium for any given value of the wealth share, ωt.
43 Such general equilibrium effects

may not apply in situations where the shorting frictions affect only a small set of stocks. We

address this issue next.

6.2 A limiting economy with a small and a large stock

In Appendix E we use logarithmic preferences (as in the baseline version of the model) and

analyze a two-stock version, where the first stock is subject to the same shorting frictions as

in the baseline model, while the second one isn’t. Here we specialize this two-stock setup

to a situation where (a) the first stock produces a dividend that is small compared to the

dividend of the second stock, and (b) only a small fraction of the population expresses an

active demand (“participates”) in the market for the small stock. We proceed to briefly

sketch the setup of the model and show how the dynamics of the wealth shares in the high-

and no-shorting equilibria affect the price-dividend ratio of the small stock. We provide a

complete analysis in Appendix F.

Specifically, we assume that there are two types of trees, namely “small” trees (type-1

trees) and “large” trees (type-2 trees). Type-2 trees have dividends similar to the baseline

model, namely D2,t,s = ϕ2δ2D2,te
−δ2(t−s), where ϕ2 > 0, δ2 > 0, s is the vintage of the tree,

and D2,t follows a geometric Brownian motion, dD2,t

D2,t
= µ2,Ddt+σ2,DdB2,t, with drift µ2,D > 0.

Type-1 trees produce dividends D1,t,s = ϕ1δ1D2,se
−δ1(t−s)+σ1,D(B1,t−B1,s), with ϕ1 > 0 and

δ1 > 0. The innovations dB1,t can be thought of as dividend innovations that are specific

to stock 1 (“stock-1-specific risk”). With the above dividend specifications, the ratio of all

type-1 trees’ dividends to all type-2 trees’ dividends, D1,t

D2,t
, is stationary and given by

D1,t

D2,t

=

∫ t
−∞D1,t,sds∫ t
−∞D2,t,sds

=
ϕ1

ϕ2

∫ t

−∞

D2,s

D2,t

δ1e
−δ1(t−s)+σ1,D(B1,t−B1,s)ds. (34)

When type-1 trees are small compared to type-2 trees
(
ϕ1
ϕ2

≈ 0
)
, aggregate consumption

D1,t +D2,t is approximately equal to the aggregate dividends of the large, type-2 trees, and

43. Figure D.2 in Appendix D depicts the interest rate as a function of ωt across the two equilibria.
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therefore aggregate consumption follows a geometric Brownian motion. The implication is

that the interest rate and the risk premium for type-2 trees both converge to constants as

the ratio ϕ1
ϕ2

goes to zero.

In the baseline model, entry and exit of investors into the single stock market is tied to the

arrival and departure of agents in the economy and is exogenous. The extension to two risky

stocks requires that we model the entry and exit into the market for stock 1. For reasons

of realism, we assume that only a (small) fraction of investors, ω̂, participate in the market

for stock 1 at any given point in time:44 Participants in the market for stock 1 optimize

their holdings of stocks 1 and 2 and the bond. By contrast, non-participants express a zero

demand for stock 1 and only optimize their holdings of stock 2 and the bond. As we show

in greater detail in the appendix, when the wealth share of participants, ω̂, is sufficiently

small (i.e., proportional to the market-capitalization share of stock 1), the risk premium for

bearing the stock-1-specific risk does not converge to zero (as ϕ1
ϕ2

≈ 0): Intuitively, while

the stock-specific risk of stock 1 is small from an aggregate perspective (in the sense that

aggregate consumption is unaffected by it), the fraction of the population that bears the

stock 1-specific risk is also small, and therefore this risk carries a risk premium.

Per unit of time, a measure of investors with wealth share θω̂ are drawn from the general

population of all investors at random and become participants in the market for stock 1.45

Of the arriving investors, a fraction ν are of type R and 1− ν are of type I, as in the baseline

model. Specifically, while all investors agree on the dynamics of the Brownian motion B2,t,

R investors (correctly) believe that the stock-1-specific Brownian motion B1,t has no drift,

while the irrational investors, I, believe that B1,t has a drift equal to η.

To remain active participants in stock 1, investors must incur a small, non-pecuniary,

disutility flow ε capturing an attention cost. This cost may result in endogenous exit.

Specifically, an investor of type i ∈ (I, R) chooses to keep paying attention to stock 1 if

and only if her expected net utility from remaining attentive to stock 1 an optimally chosen

period of time strictly exceeds the attention cost over that period.

44. This assumption is in the spirit of the “limited recognition hypothesis” of Merton (1987).
45. The assumption that the hazard rate of entry “scales” with ω̂ ensures that the ratio of the wealth of

market-1-participants to the market-capitalization of stock 1 approaches a finite limit, and therefore the
stock-1 specific risk does not disappear. See Appendix F.
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Assuming that ε is sufficiently close to zero, the attention cost is irrelevant for investors

of type I: these investors’ perceived benefit from being able to invest in stock 1 is bounded

away from zero. For investors of type R, however, there are regions of ωt where the optimal

holding of stock 1 is zero, and even a small disutility can lead them to exit the market.

Formally, the net value that an investor of type R derives from being in the market for

stock 1 equals

V R(ωt) ≡ Et

[
max
wu,T

∫ T

t

e−ρ(u−t)
(
wu (µ1,u − ru + λu(wu))−

1

2
(wuσ1,u)

2 − ε

)
du

]
, (35)

where T ≥ t is the stochastic time of exit from the market for stock 1 (which can be

endogenous, or occur exogenously with a hazard rate of θ). Equation (35) uses the assumption

of logarithmic preferences to express the net expected utility gain from continued presence in

market 1 as the increase the investor’s logarithmic growth rate of wealth, wR1,u
(
µu − ru + λRu

)
−

1
2

(
wR1,uσu

)2
, net of the flow disutility ε.46 For given equilibrium functions κ(ωt) and y(ωt),

there is a critical boundary ω, with the property V R(ω) = 0, typically lying in the region of

ωt where w
R
1,u(ωt) = 0, that acts as a “reflecting barrier” for ωt. Specifically, if the process ωt

were to ever exceed ω, there would be enough exit to restore ωt to ω.
47,48

Appendix F contains further technical details on entry and exit,49 as well as a derivation

of the differential equation obeyed by the price-dividend ratio, which depends on (a) whether

investors coordinate on the high- or the low-shorting equilibrium and (b) on the fraction of

market-1 participants who are rational, ωt. Here we briefly illustrate the solution and discuss

its properties. We are interested in situations where the disagreement is large (η = 0.9), and

the speed of investor churn in market 1 is quite large (θ = 1), to capture short-termism. The

idiosyncratic dividend volatility is not too large, σ1,D = 7%, and the shorting fee is at the

46. To arrive at equation (35), we also use the fact that in the limit where stock 1 becomes small, the
independence of the brownian motions B1,t and B2,t also implies that the returns of the two stocks are
independent (Appendix E).
47. This behavior is reminiscent of models of industry equilibrium with endogenous entry and exit (e.g.,

Leahy (1993) and Baldursson and Karatzas (1996).)
48. Once an investor exits the stock for market 1, she could in principle re-enter the market for stock 1 at a

future time. However, the rate of entry from the general population of stock-1-non-participants is proportional
to ω̂, which in turn approaches zero in the small-stock limit. Therefore, the likelihood of re-entry is negligible.
49. In a nutshell, the entry and exit assumptions ensure that the wealth share of the general population of

investors who participate in market 1, ω̂, is constant over time, while the fraction of rational investors who
participate in market 1, ωt, is time-varying and stationary.
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Figure 8: The line labeled “No shorting equil.” (resp. “High shorting equil.”) depicts the log-price-
dividend ratio if investors coordinate on no (resp. highest) shorting whenever the wealth share of
rational investors in market 1, ωt, is in a region allowing for multiple equilibria (values of ωt between
ω∗
1=0.21 and ω∗

2=0.59 in this specific calibration). The dotted line ω1 depicts the exit boundary at
which V R(ω1) = 0 in the “no-shorting” case and ω2 depicts the exit boundary in the “high-shorting”
case. The exit boundaries satisfy the inequalities ω∗

1 < ω1 and ω∗
2 < ω2.

high levels that one encounters for stocks that are “on special” (φ = 5.7%). A proportion

ν = 0.7 of new investors are of type R. In equilibrium, this value of ν ensures that the

endogenous exit decision is meaningful, that is, under any equilibrium there is a possibility

that ωt “spends time” in a region where a zero holding of asset 1 is optimal for investor R.

We assume that the sum of the interest rate and depreciation rate for stock 1, r + δ1, is 0.1.

We set τ = 0.8, as in Section 5.3. Finally, for the disutility ε we intentionally choose a very

small amount (0.1 basis points on an annual basis).50

Figure 8 shows the log price-dividend ratio under two different assumptions on the

equilibrium on which investors coordinate. Specifically, the line “zero shorting” assumes that

investors always coordinate on the equilibrium with zero shorting, if one exists. By contrast,

the line “high shorting” assumes that investors always coordinate on the equilibrium with the

highest possible shorting, if one exists. Note that both lines extend only until the levels ω1

and ω2, respectively, which are the levels of ωt at which R investors exit in the equilibrium

with zero, respectively high, shorting.

There are several noteworthy features of Figure 8. First, the price-dividend ratio for

50. Given the large value of θ, any reasonable choice of ρ in (35) is inconsequential, since the effective
discount rate is ρ+ θ. For simplicity, we set ρ = 0.
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the zero shorting equilibrium is higher than the price-dividend ratio for the high shorting

equilibrium. This may seem counterintuitive, since the high shorting equilibrium implies

a lower Sharpe ratio for a fixed ωt. To understand this feature, it is important to recall

that in this small-stock/large-stock setup both the expected dividend growth rate of stock

1 and the interest rate are constant in the limit where ϕ1
ϕ2

≈ 0. Accordingly, by a standard

Campbell-Shiller decomposition argument, the log-price dividend ratio of stock 1 can be

viewed as a geometrically-weighted average of the future risk premiums (from t to ∞) for

stock 1, which are impacted by the expected future Sharpe ratios of stock 1. The reason why

the price-dividend ratio is higher in the zero-shorting equilibrium is that the dynamics of

the wealth shares of I and R investors differ depending on whether the economy coordinates

on the high- or zero-shorting equilibrium, and as a result so do the dynamics of future

Sharpe ratios. We already showed in Section 3 that, when the economy coordinates on the

high-shorting equilibrium, the wealth dynamics favor R investors. As a result, their future

wealth shares are higher, which in turn tends to raise the path of future Sharpe ratios.

Participation costs accelerate these wealth dynamics: To see this, suppose that the market

coordinates on the high shorting equilibrium and that ωt > ω1. If a coordination shock

shifts the economy to the zero-shorting equilibrium, short sellers exit instantaneously until

ωt+ = ω1, where ωt+ is the value of ωt after the equilibrium shift. At the new value ωt+ = ω1,

the shorting market is still inactive (ω1 > ω∗
1) and the remaining short sellers pay the (flow)

participation cost despite holding a zero position in stock 1. However, the exit of a sufficient

number of short sellers has increased the probability that future values of ωt will fall below

ω∗
1, and thus the shorting market will become active again. (Recall that, for values of ωt

below ω∗
1, the equilibrium is unique and involves shorting.) For this reason, the instantaneous

Sharpe ratio may well move up, while the expected, geometrically weighted average of the

Sharpe ratio from t to ∞ may well move down, thus raising the price-dividend ratio. In

Appendix F we provide a graphical illustration of why the Sharpe ratio can move up in the

short run and down in the long run. (See Figure F.1 and the discussion surrounding it.)
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Figure 9: Left: Histogram of monthly returns (1973–2021). Equal-weighted, monthly returns on
a portfolio long stocks in the top decile of short interest and short the market index. Center:
Histogram of monthly AR(1) process innovations in short interest (1973–2021). Right: Cumulative
returns to an equal-weighted long-short portfolio are shown by the solid black line. Arrows indicate
observations for the months November 2020 to January 2021. The dashed line in the right panel
excludes the six most-discussed tickers on the WallstreetBets subreddit (AMC, BBBY, GME, SPCE,
TLRY, and TSLA).

7 The Retreat of Short Sellers between November 2020

and January 2021: A Case Study

In this final section we use the insights of our model to provide a potential explanation for the

remarkable, and arguably puzzling, set of events that unfurled in the stock market between

November 2020 and January 2021 — in particular, the unprecedented drop in short interest

across a large number of stocks and the simultaneous appreciation of these stocks’ price.

We document that (a) the short-seller retreat that started in November 2020 was followed

by historically large losses for short-selling strategies, (b) this retreat preceded (by approxi-

mately two months) the dramatic and heavily publicized events surrounding meme stocks,

and (c) the retreat was quite broad (across hundreds of stocks), and occurred among stocks

that neither experienced a significant change in retail trading volume, nor were the topic of

intense online discussion (as was the case with other meme stocks, predominately GameStop).

We conclude, therefore, that the very poor performance of shorting strategies was the result

of an abrupt shift in the behavior of short sellers, rather than that of a coordinated short

squeeze by retail investors.

To start, in Figure 9 we plot the monthly returns to an equal-weighted portfolio that
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bets against the shorts. The portfolio is long the top decile of Russell 3000 stocks, ranked

by short interest, and short the broad market. The left panel of Figure 9 shows that the

November 2020 and January 2021 returns are the highest and second-highest (respectively)

since the beginning of the sample (1973), while December 2020 is also in the top decile

of the historically observed returns.51 (The right panel of Figure 9 depicts the cumulative

returns of the betting-against-the-shorts strategy to illustrate that November 2020 marks the

start of the ascent.) The center panel of Figure 9 shows that the reduction in short interest

was equally dramatic by historical standards and began prior to the meme stock events of

January 2021. To further underscore that the short-seller retreat preceded these events, in

Figure J.3 (Appendix I) we plot the daily submissions to the WSB subreddit (which was the

online forum where users posted their opinions on Gamestop and other meme stocks) on a

logarithmic scale. The graph shows that the explosive growth of online submissions occurred

in early January 2021; November 2020 does not stand out.

Furthermore, while for GameStop there was a clear spike in retail purchase volume,52 a

remarkable feature of the data is that short sellers retreated across hundreds of stocks even

though these stocks did not experience any unusual patterns in retail trading volume. Figure

10 plots the univariate distributions and scatter plots of (i) changes in short interest and (ii)

retail purchase volume as a fraction of total volume for the most shorted stocks (top decile

of stocks) ranked by short interest as of January 15, 2021. (All quantities are reported as

standardized z-scores.) The distribution of the retail-purchase volume to total volume is

centered around zero, with most values in a [–2, 2] range. By contrast, the distribution of

changes in short interest is overwhelmingly negative, with most values in the [–5, 0] range. In

addition, the relation between short interest and retail purchase volume is flat, as the scatter

plot in Figure 10 illustrates.

To summarize, the short-seller retreat appears to have started in November 2020, a time

when online discussion had not “picked up” yet. Moreover, it pertained to hundreds of stocks

51. Figure J.2 in Appendix I further shows that November 2020 and January 2021 remain outliers if we
exclude tickers that were heavily discussed on the WallStreetBets subreddit (MC, BBBY, GME, SPCE,
TLRY, and TSLA.), if we only include S&P500 constituents (i.e., larger stocks) in the formation of the long
leg of the portfolio, and if we value-weight rather than equal-weight returns. See also Table J.1 in Appendix I
for formal statistical tests.
52. Appendix Figure J.4 shows that the online discussion was highly correlated with retail trading volume

in the case of GameStop.
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Figure 10: Retail purchase volume (as a fraction of total volume) and change in short interest,
January 2021. Both quantities are reported as standardized z scores using TAQ and SEC data
(respectively) from January 2015 through January 2021 to compute means and standard deviations.
Panel (a) plots the empirical cumulative distribution of the two quantities, alongside a standard
normal for reference. Panel (b) plots their joint distribution, along with the line of best fit. Tickers
that were popular discussion topics on WSB and that are also in the top decile of short interest are
indicated with “♢”, while all other tickers are indicated with “+”.

that saw no unusual change in retail trading volume. This suggests that for many stocks

(other than the few meme stocks), the retreat in short selling happened even though the

wealth composition across investor types (ωt) did not change. Our model offers the possibility

that some early signs of retail purchase instability triggered a coordination shock that led to

a shift in equilibrium. An attractive aspect of this explanation for this particular episode is

that there was no other obvious reason (such as a large loss by short sellers in other markets)

that preceded the short selling retreat. We should also note that the seemingly simpler

explanation that the broad declines in short interest were due to a correlated increase in

irrationality (η) across stocks, but in an economy featuring a unique equilibrium, would run

into the problem that dyt
dη

is positive rather than negative.53 Increased irrationality would

therefore lead to a higher rather than lower level of short interest.54

53. See the proof of Lemma 2.
54. We also note that the decline in short interest was not just a short-run phenomenon. Figure J.5 in

Appendix I shows that short interest didn’t revert in the six months that followed January 2021.
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8 Conclusion

Shorting can exhibit run-type patterns. The demand for shorting can be backward-bending

and consequently for the same fundamentals there can be multiple equilibria featuring different

degrees of shorting activity. We identify a general condition on the relation between fees

and utilization that is necessary for the existence of multiple equilibria. We document that

utilization and lending fees exhibit abrupt shifts. We also provide evidence that the stocks

that satisfy the condition for the existence of multiple equilibria are more likely to experience

jump-like behavior in utilization. In extensions of the baseline model we show that short

sellers may choose to leave the market for the stock despite a rising stock price.
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For Online Publication – Appendix

A The Determination of the Lending Fee

In the text we assume a “flat” supply curve for lending shares. That is, we assume ft =
f(yt) = φ. We provide here the simplest model that supports this assumption. We also
discuss how to extend the model to allow for an increasing f(·).

All interactions considered in this section happen anew every period, where the length of
the period is idealized to be “dt,” that is, infinitesimal. (We could formalize this assumption
by considering a discrete-time model where the length ∆ of a period is taken to go to zero,
and focusing on the limit of resultant equilibria.)

We start by considering the long investors, who wish to lend their shares. Each investor
lends all her shares to any one of a competitive fringe of profit-maximizing “security lenders”
in exchange for an income stream that is proportional to the dollar value of shares the investor
lends. This income stream is determined as follows. In equilibrium, each security lender
lends a proportion yt of the shares it borrows from investors and receives a fee fl per dollar
of shares it lends out. (We omit time subscripts from now on.) Competition between the
security lenders drives the income stream paid to long investors to yfl per dollar of stock
owned by the investors.55

At the other end of the lending transaction, desirous short sellers interact with a com-
petitive set of “borrower’s brokers.” Specifically, for every borrowing fee fb the would-be
short sellers provide the dollar amount that they would like to short, and the brokers take
the value fb as a given when they attempt to fill the investors’ borrowing orders.

All of the frictions in this model pertain to the interaction between security lenders and
borrower’s brokers. Specifically, to initiate a stock loan the representative broker must pay a
cost ξ per dollar value of share “located” with a security lender, per unit of time. This cost
is construed as labor cost that compensates brokers for their disutility of labor.

The interaction between the broker and the security lender takes the form of bilateral Nash
bargaining in which the broker has bargaining power 1/(1 + z) for a parameter z ∈ (0,∞).
Given our assumption that all interactions (between investors and brokers or security lenders
and between brokers and security lenders) happen anew every period, the outside option for
both brokers and security lenders is the failure to transact during the period. This means
that the gains from trade to the security lender equal the lending fee fl, while to the broker
the borrowing fee net of the lending one fb − fl — the searching and matching cost ξ has
been sunk at this point. The total gains from trade equal fb, the foregone revenue from the
would-be short seller. Given the bargaining protocol, it follows that

fl =
z

1 + z
(fl + fb − fl) =

z

1 + z
fb. (A.1)

55. In that sense, the security lenders resemble the “insurance companies” in Blanchard (1985). Similar
to how insurance companies collect payments from the fraction of agents who die and rebate them to the
surviving population, the security lenders collect lending fees from the proportion of a long portfolio that
gets loaned out and rebate it in the form of an income stream to the representative long investor.
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Brokers break even on net, meaning that

fb = fl + ξ, (A.2)

so that

fl = zξ, (A.3)

fb = (1 + z)ξ. (A.4)

To keep the model transparent and tractable, assume that all brokers are members of the
representative household, and therefore the fees that compensate them for their effort are
rebated to each households as an income stream proportional to the household’s wealth and
independent of the composition of the household’s portfolio.

Setting φ = (1 + z)ξ and τ = z/(1 + z), this extended model is equivalent to the model
we assumed in the text. To generalize to upward-sloping supply curves, one would simply
assume an increasing cost ξ(y).

B Multiple Agent Types

We illustrate here that the multiplicity of equilibria may expand with the number of agent
types. In particular, adding a third group of agents can result in a third equilibrium featuring
non-zero shorting; such a model may admit, in fact, up to five equilibria.

Specifically, let us assume a third group of investors characterized by beliefs that are
summarized by the quantity ηP . We think of these investors as pessimists, which implies
ηP < 0. The intuition we wish to capture is that, in addition to the “high-shorting” and
“medium-shorting” equilibria in the base-line model, low-shorting equilibria may exist in which
investor R is inactive, while investor P shorts actively.

To make the point theoretically, one may argue by continuity. Specifically, consider the
zero-shorting equilibrium in the baseline model, and perturb the setting by adding a small
mass of sufficiently pessimistic investors (|ηP | large enough). These investors will want to
short, but will not be sufficiently numerous to move the Sharpe ratio or lending income to a
point where investors R and I are no longer in equilibrium.

It is helpful to write down the equilibrium conditions in the augmented model — both
to allow for a formal argument and in the interest of a numerical illustration. We repeat
the analysis in the text — letting ωP denote the wealth share of agents P — to obtain the
market clearing condition

1 =
1

σD

[
ωP
(
κ+ ηP +

φ

σD

)
1{

κ+ηP+ φ
σD

<0
} + ωR

(
κ+

φ

σD

)
1{

κ+ φ
σD

<0
}+ (B.1)

ωI
(
κ+ ηI +

φ

σD
τy

)]
,

where the left-hand side is the proportion of aggregate wealth represented by the supply of
the stock, while the right-hand side equals the proportion of aggregate wealth invested in the
stock. We restricted attention to cases in which R agents do not take a long position in the
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stock.
We solve for the Sharpe ratio κ:

κ = σD −
(
ωPηP + ωIηI

)
− φ

σD

(
ωP + ωR + ωIτy

)
(B.2)

if κ+ φ/σD < 0, respectively

κ =
σD

ωP + ωI
− ωPηP + ωIηI

ωP + ωI
− φ

σD

ωP + ωIτy

ωP + ωI
(B.3)

if κ+ φ/σD ≥ 0 > κ+ ηP + φ/σD.
The other equilibrium condition concerns the determination of the value of y:

y = −
ωP
(
κ+ ηP + φ

σD

)
1{

κ+ηP+ φ
σD

<0
} + ωR

(
κ+ φ

σD

)
1{

κ+ φ
σD

<0
}

ωI
(
κ+ ηI + φ

σD
τy
) . (B.4)

Depending on whether κ is determined according to (B.2) or (B.3) we obtain a different
quadratic equation. For appropriate parameter choices all but one combinations are possible
in terms of how many solutions in the interval (0, 1) each of them admits. We are particularly
interested in situations in which (B.2) applies and results in two admissible solutions, in
addition to which at least one solution obtains when (B.3) applies.

We illustrate such outcomes in Figure B.1. The two panels differ in terms of parameters,
but depict the same objects. Specifically, the x-axis records candidate values of y that agents
anticipate. Agents form demands taking such a value y and a Sharpe ratio κ as given, and
clearing in the asset market determines the Sharpe ratio. With the Sharpe ratio now specified
for each candidate y, we can compute the actual resulting y — the value of the right-hand
side of equation (B.4). This quantity is recorded on the y-axis. An equilibrium requires that
the x and y coordinates are equal.

The line “R and P short” plots y as if both R and P shorted, that is, their portfolio
weights are calculated by adding the return φ to their perceived intrinsic expected return
from the asset; in that case, the Sharpe ratio is given by (B.2). The line “Only P shorts”
is produced similarly, except that the demand of agent R is set to zero; equation (B.3)
applies. The actual resulting y is depicted by the thick continuous line, labeled “Actual
response.” Finally, the line “Diagonal” depicts the equilibrium condition. Equilibria are
therefore represented by points of intersection between the two continuous lines. The left
panel presents a situation in which four equilibria with positive amounts of shorting and one
with zero shorting obtain. The right panel presents a situation with three equilibria, all of
which feature positive y.

We also flesh out the theoretical argument for the existence of a third equilibrium when
ωP is close to zero and two equilibria with y > 0 exist with ωP = 0 — i.e., the baseline model.
By assumption, with ωP = 0 and y = 0 equation (B.3) applies and κ+ φ

σD
> 0. Choosing ηP
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Figure B.1: The figure plots, in each panel, four lines pertaining to the model extension developed
in this section. Equilibria are characterized by the satisfaction of equation (B.4), whose right-hand
side is represented here by the line “Actual response” and the left-hand side by the line “Diagonal.”
Further details are provided in the text.

so that κ+ ηP + φ
σD

< 0, we wish to conclude that equations

y = −
ωP
(
κ+ ηP + φ

σD

)
ωI
(
κ+ ηI + φ

σD
τy
) (B.5)

and (B.3) admit a solution that satisfies κ+ φ
σD

> 0 even for ωP > 0, at least when it is small

enough. For simplicity, we keep ωI constant as we increase ωP from zero. Plugging (B.3) in
(B.5) we obtain a quadratic that can be written as

y =
ωP

ωI

(
ηI − ηP

)
ωI − φ

σD
ωIτ (1− y)− σD

(ηI − ηP )ωP − φ
σD
ωP τ (1− y) + σD

≡ H(ωP , y). (B.6)

Our choice of ηP is such that the numerator of the second fraction on the right-hand side is
positive at y = 0, which implies ∂H

∂ωP > 0 evaluated at ωP = 0, as well as ∂H
∂y

= 0 at ωP = 0.
We therefore have

dy

dωP
=

(
1− ∂H

∂y

)−1
∂H

∂ωP
> 0, (B.7)

confirming that an equilibrium with positive y exists for small ωP . (The condition κ+ φ
σD

> 0
is satisfied by continuity.)
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Figure C.1: Illustration of the effect of a decrease in volatility on the probability of Type-I and
Type-II errors.

C A Graphical Illustration of the Findings of Table 4.

In this section we provide a more detailed explanation for why a drop in volatility lowers the
measured jump intensity of stocks that are unlikely to satisfy the condition of Proposition 4,
but not for those that are likely to satisfy it.

For stocks that don’t satisfy the condition of Proposition 4, the innovations to utilization
are diffusive and the absolute value of the innovations to utilization (over discrete time-
intervals) follows a distribution that resembles the half-normal distribution (since we are
considering absolute values of utilization-changes.) This half-normal is depicted by distribution
A in Figure C.1. Of course, since a jump is defined as a realization above U , there is the
possibility of declaring a “false positive” jump with a probability that is depicted as Region I
in the figure. Stocks that satisfy the condition of Proposition 4 could exhibit either positive
or negative jumps in utilization. The relevant distribution of utilization-changes looks like
the absolute value of a mixture distribution: If no jump occurs, the relevant distribution is A.
If a jump occurs, then the relevant distribution is B. Distribution B is the same as A, but
shifted to the right because of the jump. (Note that because we take absolute values, the
shift is always to the right.) Since a “jump” is an observation above the cutoff U , there are
possibilities of both false positive jumps (Region I), but also false negative jumps (Region
II). These false negative jumps are instances where the jump has occurred, but the absolute
value of the discrete-time change in utilization is still below the cutoff U .

The right plot of figure C.1 depicts a decline in the (diffusive) volatility of utilization.
When the volatility falls, the area associated with Regions I and II shrinks.

The shrinkage of area I implies that the possibility of a false positive jump declines, thus
lowering the (measured) jump rate of stocks that don’t satisfy the condition of Proposition 4.

For stocks that satisfy the condition of Proposition 4 there are two opposing effects.
On the one hand side, the shrinkage of area I lowers the instances of false positive jumps,
which lowers the measured jump rate; on the other hand, the shrinkage of area II lowers
the instances of false negatives, which raises the measured jump rate. In short, a decline in
volatility should unambiguously lower the measured jump rate for stocks that cannot exhibit
jumps (fifth quintile stocks), but should have a lower (and in principle ambiguous effect) on
the measured jump rate of stocks that are likely to satisfy the condition of Proposition 4
(first quintile stocks).
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D Recursive Preferences with Unitary RRA

In this section we provide the details underlying the discussion in Section 6.1 in the text. For
clarity, we develop the argument linearly, culminating in a formal result (Proposition 5).

We adopt the Epstein-Zin preference specification with the risk-aversion coefficient con-
strained to take a value of one:

Vt = Et

∫ ∞

t

e−(ρ+π)(s−t)
(
cα

α
ds− 1

2Vs
d[Vs]

)
. (D.1)

This specification leads to V homogeneous of degree α in the consumption stream {ct}t,
so that we can conjecture

V (W,x) =
Wα

α
g(x)α−1, (D.2)

where the function g(·), to be computed, will be shown below to equal the agent’s consumption-
to-wealth ratio.

Finally, we maintain the conjecture that an appropriate — and sufficient — state variable
is the wealth share of agent R, denoted by ω. Because of unit risk aversion, the optimal
portfolio coincides with the one obtained under log utility. Treating the volatility of returns,
σt, as known, we make use of the known (myopic) portfolio policy to write

wR =
κt +

f(yt)
σt

σt
1
κt+

f(yt)
σt

<0
+
κt + τyt

f(yt)
σt

σt
1
κt+τyt

f(yt)
σt

>0
(D.3)

wI =
κt + η + f(yt)

σt

σt
1
κt+η+

f(yt)
σt

<0
+
κt + η + τyt

f(yt)
σt

σt
1
κt+η+τyt

f(yt)
σt

>0
, (D.4)

noting further that the first term on the right-hand side of (D.4) equals zero in equilibrium,
since I cannot short in equilibrium. We have the equilibrium restrictions

yt =
ωt

1− ωt

wR
−

wI
(D.5)

1 = wRωt + wI(1− ωt). (D.6)

A key determinant of the portfolio choices is the market return volatility σt, i.e., the
diffusion parameter in the equation

dRt =
dSt
St

− δdt+
Dt

St
dt

= µtdt+ σtdBt. (D.7)

We define the price-to-dividend ratio, pt = St/Dt, an conjecture it to be a function of ω.
The restriction that aggregate wealth equals the stock price and aggregate consumption the
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stock dividend gives

p(ω) :=
St
Dt

=
(∑

gi(ω)ω
i
)−1

, (D.8)

so that we obtain

σt = σD +
p′(ω)

p(ω)
σω (D.9)

µt = µD − δ +
1

p(ω)
+
p′(ω)

p(ω)
µω +

1

2

p′′(ω)

p(ω)
σ2
ω +

p′(ω)

p(ω)
σωσD. (D.10)

We derive the dynamics of the wealth-share ωt by remarking that WR,t = ωtSt and thus

d(ωS)

ωS
= (r + π + n)dt+ wR (dRt + (f(y)1wR<0 − r) dt)− gR(ω) dt− πdt+

νδ

ω
dt.

(D.11)

Writing

dωt = µωdt+ σωdBt, (D.12)

we have the dynamics

σω + ωσt = wRωσt (D.13)

µω + ω(µt + δ − p(ω)−1) + σωσt = ω
(
rt + n+ wR (µt + f(y)1wR<0 − rt)− gR

)
+ νδ.

(D.14)

Note that the drifts are subject to the agents’ probability distortions. Specifically, agent
I perceives µIt = µt + ησt, which we already recognize in the portfolio choice problem. This
must also be recognized in (D.14), i.e., agent I perceives

µIω = wRµIt = µω + ω(wR − 1)ησt = µω + ησω. (D.15)

Equations (D.9) and (D.13) lead to

σt − ω
p′(ω)

p(ω)
(wR − 1)σt = σD. (D.16)

Given that the interest rate equals

rt = µt − κtσt, (D.17)

the system of equations (D.3)–(D.6) comprises four equations and has four unknowns — wR,
wI , y, and κ — treating gi(·) as known.
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To solve this system together with (D.16), note that (D.16) gives σ−1
t as linear in wR:

1

σt
=

1

σD

(
1 +

xp′(x)

p(x)
(1− wR)

)
. (D.18)

We can go through three cases, depending on the sign of wR:
Case I: wR > 0. We have

κ = σt − (1− x)η (D.19)

wR =
κ

σt
= 1− (1− x)η

σt
. (D.20)

We can combine this equation with (D.18) to get

1− wR = (1− x)
η

σD

(
1 + x log(p)′(1− wR)

)
(D.21)

1− wR =

(
1− (1− x)x

η

σD
log(p)′

)−1

(1− x)
η

σD
(D.22)

wR = 1−
(
1− (1− x)x

η

σD
log(p)′

)−1

(1− x)
η

σD
, , (D.23)

which must be positive if it is to be equilibrium value for wR.
If (D.23) gives wR negative, then we may be in either Case II, in which the type R investor

stays out of the market, or III, in which the type R investor shorts the stock.
Case II: wR = 0. Here,

κ =
σt

1− x
− η (D.24)

and we know from the violation of Case I that, with wR = 0, the condition κ < 0 is satisfied.
In order for this case to provide an equilibrium, it must also be the case that shorting, with
y = 0, is unattractive:

1

1− x
− η

σD

(
1 +

p′

p

)
+
f(y)

σ2
D

(
1 +

p′

p

)2

≥ 0. (D.25)

The left-hand side of this inequality, too, uses the form σt takes when w
R = 0.

If this inequality is not satisfied, then we are (verified below) in
Case III: wR < 0. We get, from the market-clearing condition,

κ = σt − η(1− x)− f(y)

σt
(x+ (1− x)τy) , (D.26)
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which we plug back in (D.3) to obtain

wR = 1− η(1− x)

σt
+
f(y)

σ2
t

(1− x)(1− τy) (D.27)

= 1− η(1− x)

σD

(
1 + (1− wR)

xp′

p

)
+
f(y)

σ2
D

(1− x)(1− τy)

(
1 + (1− wR)

xp′

p

)2

.

Finally, y is also expressed in terms of wR:

y = − wRx

wI(1− x)
=

−wRx
1− wRx

, (D.28)

leading to

wR = 1− η(1− x)

σD

(
1 + (1− wR)

xp′

p

)
+ (D.29)

f(y)

σ2
D

(1− x)

(
1 + τ

wRx

1− wRx

)(
1 + (1− wR)

xp′

p

)2

.

This is a cubic equation, whose solutions are available explicitly. For the sake of com-
pleteness, we write the cubic in full, as

0 =
3∑
i=0

Awi w
i, (D.30)

with

Aw3 = −f(y)
σ2
D

(1− x)x3(1− τ)

(
p′

p

)2

(D.31)

Aw2 = x− η

σD
(1− x)x2

p′

p
+
f(y)

σ2
D

(1− x)

(
2x(1− τ)

(
1 +

xp′

p

)
xp′

p
+

(
xp′

p

)2
)

(D.32)

Aw1 = −1− x+
η

σD
(1− x)

(
xp′

p
+ x

(
1 +

xp′

p

))
− (D.33)

f(y)

σ2
D

(1− x)

(
x(1− τ)

(
1 +

xp′

p

)2

+ 2

(
1 +

xp′

p

)
xp′

p

)

Aw0 = 1− η

σD
(1− x)

(
1 +

xp′

p

)
+
f(y)

σ2
D

(1− x)

(
1 +

xp′

p

)2

. (D.34)
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We also note explicitly the expression for κ that holds in all of the cases:

κ =

(
σt

1− x
− η

)
(1wR=0 + (1− x)1wR>0)+(

σt − η(1− x)− f(y)

σt
(x+ (1− x)τy)

)
1wR<0. (D.35)

We are ready to derive the ODE obeyed by the functions gi. We write the Hamilton-
Jacobi-Bellman (HJB) equation:

0 = sup
c,w

(cW )α

α
− 1

2α

d[Wαgα−1]t
Wαgα−1

+ E

[
d
e−(ρ+π)tWαgα−1

α

]
. (D.36)

This equation holds for each of the two agents, under their respective beliefs. Using the
dynamics of W i and g(ωt), we expand (D.36) as

0 = sup
c,w

(cW )α

α
− 1

2α

d[Wαgα−1]t
Wαgα−1

+Wαgα−1

(
r + n+ π + w(κ̂σt)− c− ρ+ π

α

)
+

α− 1

α

g′

g
µxW

αgα−1 +
α− 1

2

(
w2σ2

t + 2wσt
g′

g
σx +

(α− 2)

α

(
g′

g

)2

σ2
x

)
Wαgα−1+

α− 1

2α

g′′

g
σ2
xW

αgα−1, (D.37)

where the second term equals

1

2α

d[Wαgα−1]t
Wαgα−1

=
α

2

(
wσt +

α− 1

α

g′

g
σx

)2

Wαgα−1 (D.38)

=

(
α

2
w2σ2

t + (α− 1)wσt
g′

g
σx +

(α− 1)2

2α

(
g′

g

)2

σ2
x

)
Wαgα−1

and we used the notation κ̂ for κ̂i defined as

κ̂i = κ+ ηi +
f(y)

σt
1w<0 +

τyf(y)

σt
1w>0. (D.39)

Plugging in the HJB, we have

0 = sup
c,w

cα

α
+ gα−1

(
r + n+ π + w(κ̂σt)− c− ρ+ π

α

)
− 1

2
w2σ2

t g
α−1+ (D.40)

α− 1

α

g′

g
µxg

α−1 +
α− 1

2α

g′′

g
σ2
xg

α−1 − α− 1

2α

(
g′

g

)2

σ2
xg

α−1,

which implies c = g and w = σ−1
t κ̂ when w ̸= 0 (interior solution).
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Finally, we plug these values back in the HJB to obtain the ODE

0 = r + n+ π + wiκ̂iσt −
1

2
(wi)

2
σ2
t −

ρ+ π

α
− α− 1

α
gi +

α− 1

α

g′i
gi
µiω− (D.41)

α− 1

2α

(
g′i
gi

)2

σ2
ω +

α− 1

2α

g′′i
gi
σ2
ω.

In the above equation, the interest rate r is a function of the unknown functions gi and
their derivatives, as follows.

We start by computing

p′

p
= −

(∑
gi(x)xi

)−1 (∑
g′i(x)xi + gR − gI

)
(D.42)

p′′

p
= 2

(∑
gi(x)xi

)−2 (∑
g′i(x)xi + gR − gI

)2
(D.43)

−
(∑

gi(x)xi

)−1 (∑
g′′i (x)xi + 2g′R − 2g′I

)
and rewrite (D.10) as

µt = Bx0 +Bx1µx −
1

2

(∑
gi(x)xi

)−1 (∑
g′′i (x)xi

)
σ2
x

= Bx0 +Bx1µx −Bx2

(∑
g′′i (x)xi

)
(D.44)

for functions Bxk = Bxk(g, g
′, x) and (D.14), based on the (myopic) optimal choice wR, as

µx + x(µt + δ − p(x)−1) + σxσt = x
(
µt − κσt + n+ (κ+ f(y)1wR<0/σt)

2 − gR
)
+ νδ

µx + x(δ − p(x)−1) + σxσt = x
(
n− κσt + (κ+ f(y)1wR<0/σt)

2 − gR
)
+ νδ. (D.45)

Equation (D.45) gives µx explicitly. Then we have µt from (D.44), which we use in (D.17) to
compute r explicitly. We have

r = µD − δ +
1

p(x)
+
p′(x)

p(x)
µx +

1

2

p′′(x)

p(x)
σ2
x +

p′(x)

p(x)
σxσD − κσt. (D.46)

A last element is the income flow due to the aggregate fees:

n = −(1− τ)f(y)wRx1wR<0. (D.47)

We summarize our analysis in the following proposition.

Proposition 5 A stationary equilibrium is characterized by functions gi that obey the second-
order system of coupled ODE (D.41) whose coefficients are defined as follows: p by (D.8), wR

by (D.23) or as a solution to (D.29), wI by (D.6), y by (D.28), σt by (D.18), κ by (D.35), n
by (D.47), the dynamics of ω by (D.14) and (D.13), with µIω from (D.15), and r by (D.46).

An explicit computation of the equilibrium price requires a selection rule when multiple
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Figure D.1: Price-dividend ratios under different coordination assumptions in the multiplicity region
[ω∗

1, ω
∗
2]. The line “minimal shorting” assumes that investors always coordinate on the zero-shorting

equilibrium whenever ωt ∈ [ω∗
1, ω

∗
2]. The line “maximal shorting” assumes that investors coordinate

on the highest shorting equilibrium whenever ωt ∈ [ω∗
1, ω

∗
2]. The line “sub-intervals: 32” corresponds

to splitting the interval [ω∗
1, ω

∗
2] into 32 sub-intervals and assumes high shorting on even-numbered

sub-intervals and zero shorting on odd-numbered sub-intervals. The parameters are µD = 0.02,
σD = 0.04, π = 0.05, ν = 0.05, δ = 0.05, ρ = 0, IES = 0.85, and ϕ = 0.021.

equilibria are possible. The lines “Maximal Shorting” and “Minimal Shorting” in Figure D.1
depict the price-dividend ratios obtaining when investors always coordinate on the maximal-
shorting (resp. zero-shorting) equilibrium. The graph illustrates the general intuition we
outlined in Section 6.1, explaining that an equilibrium selection featuring less shorting results
in a higher price.

This model specification further enables us to address another question of interest,
pertaining to the effect of the frequency of equilibrium switches. Specifically, one might fear
that the expectation of switching back to a high-shorting equilibrium in the future reduces
substantially the price response to the current switch to a low-shorting one.

To gain some insight in a tractable way, we implement a scheme of frequent equilibrium
switching in the following way. We start by dividing the region of multiplicity (the interval
[ω∗

1, ω
∗
2]) into a relatively large number of equal-sized sub-intervals. On these sub-intervals,

the coordination protocol prescribes high shorting on even-numbered sub-intervals and low
shorting on odd-numbered sub-intervals. This specification allows us to capture the notion of
frequent equilibrium switching, albeit in a stylized fashion.

The resulting price-dividend ratio is illustrated in Figure D.1 for the case of 32 sub-
intervals. The figure shows that the lines labeled “Minimal shorting” and “Sub-intervals:32”
are close, indicating that the price-dividend ratio with frequent equilibrium switches is close
to the price-dividend ratio where investors always coordinate on the zero-shorting outcome.
The reason is that, when the shorting market is active, the wealth share ωt is more volatile.
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Figure D.2: Interest rate under different coordination assumptions in the multiplicity region
[ω∗

1, ω
∗
2]. The line “minimal shorting” assumes that investors always coordinate on the zero-shorting

equilibrium whenever ωt ∈ [ω∗
1, ω

∗
2]. The line “maximal shorting” assumes that investors coordinate

on the highest shorting equilibrium whenever ωt ∈ [ω∗
1, ω

∗
2]. The parameters are as for Figure D.1.

Accordingly, ωt “travels fast” inside the regions where the shorting market is active and thus
tends to exit these regions quickly. By contrast, when the shorting market is inactive, ωt
fluctuates less, moves more slowly, and as a result spends more time in these regions. We
note that this is also the reason why the mass of the stationary distribution in Figure 3 of
the paper is more concentrated in the region where the shorting market is inactive.

E A Two-Stock Economy with Limited Participation

In this section we introduce an additional security (stock 2) to our baseline model, which is
not subject to any trading frictions. We continue to assume that borrowing stock 1 requires
lending fees, as in the baseline model.

We allow one more feature, in the spirit of the “limited recognition hypothesis” of Merton
(1987). Specifically, while all investors participate in the markets for stock 2 and the risk-free
asset, only a fraction of investors pays any “attention” to stock 1. The remaining fraction of
investors simply optimize their portfolio over the risk-free asset and stock 2 and assign zero
weight to stock 1.

To ease the comparison of the results of this section with Proposition 2, we maintain the
assumption that the lending supply curve is horizontal, and the lending fee is constant and
equal to φ.

In this section, we take the equilibrium as given and derive several key restrictions that
any equilibrium must obey; we solve fully for the equilibrium in Appendix F, in a limiting
economy where stock 1 is small compared to stock 2. We assume that in equilibrium the
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returns on stocks 1 and 2 follow a vector diffusion process of the form

dR1,t = µ1,tdt+ σ1,tdB1,t + btσ2,tdB2,t (E.1)

dR2,t = µ2,tdt+ σ2,tdB2,t, (E.2)

where B1,t and B2,t are independent Brownian motions, and µ1,t, µ2,t, σ1,t, σ2,t, and bt are
determined in equilibrium.We assume that investors I believe that Brownian motion 1 follows
the dynamics56 dB1,t+ηdt, while no investor has any belief distortions pertaining to Brownian
motion 2.

To facilitate the statement of equilibrium returns, we define m̃1,t ≡ m1,t

ω̂t
as the ratio of

the stock-1 market capitalization share, denoted by m1,t, to the wealth share of all investors

participating in the market for stock 1, denoted by ω̂t. We also define κ1,t ≡ (µ1,t−r)−bt(µ2,t−r)
σ1,t

as the Sharpe ratio of a portfolio long 1 unit of asset 1 and short bt units of asset 2.

Proposition 6 In an equilibrium with shorting in asset 1 (yt > 0), yt is given by the root(s)
of the quadratic equation

0 = y

(
η +

m̃1,t

ωt
σ1,t −

φ

σ1,t
(1− τy)

)
−
(
η − m̃1,t

1− ωt
σ1,t −

φ

σ1,t
(1− τy)

)
(E.3)

that lie(s) in the interval (0, 1), and the Sharpe ratio is given by

κ1,t = m̃1,tσ1,t − (1− ωt) η −
φ

σ1,t
(ωt + (1− ωt) τyt) . (E.4)

Similarly, in an equilibrium without shorting in asset 1 we have κ1,t = σ1,tm̃1,t− (1− ωt) η

if investor R holds an interior position in asset 1 and κ1,t =
σ1,tm̃1,t

1−ωt
− η otherwise.

The excess return to asset 1 is given by

µ1,t − rt = κ1,tσ1,t + bt(µ2,t − rt), (E.5)

where µ2,t − rt is the excess return of asset 2, given by the conventional CAPM relation

µ2,t − rt = btσ
2
2,tm1,t + σ2

2,tm2,t. (E.6)

Equations (E.3) and (E.4) are the same as (26) and (27), respectively, except that the
volatility, σD, is replaced by m̃1,tσ1,t. The reason for this replacement is intuitive: In the case
of a single stock, the risk of that stock, σD, is aggregate (by construction) and commands
a risk premium. When there are multiple stocks, the risk compensation for bearing the
idiosyncratic risk57 of stock 1, σ1,t, is multiplied by m̃1,t, i.e., the stock market capitalization
of stock 1 as a fraction of the wealth share of investors actively participating in the stock. An
implication is that when m̃1,t approaches zero, the idiosyncratic risk becomes diversifiable,

56. More formally, the Radon-Nikodym derivative of the true probability measure with respect to the

subjective one is given by ZI
t ≡ e−

η2

2 t+ηB1,t .
57. Recall that the Sharpe ratio in Proposition 6 pertains to a portfolio that invests one dollar in asset 1

and shorts bt units of asset 2, hedging out the exposure of the portfolio to the second Brownian shock.
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and there is no compensation for bearing that risk (the first term on the right-hand side of
(E.4) disappears).

Remark 3 Since the equations determining κ1,t and yt are essentially the same as (27)
and (26), Proposition 4 remains unchanged when there are multiple stocks, except that now
condition (b) becomes (m̃1,tσ1,t)

2 < 1
4
(1− y)2|h′(y)|. This condition therefore does not require

that the total volatility of stock 1, or even its idiosyncratic part σ1,t, be small, but rather that
the risk of stock 1 be diversifiable by the agents trading it (small m̃1,t).

F The Price-Dividend Ratio of a Small Stock

This section provides the details of the entry-and-exit process for the model of Section 6.2.
We start with a few definitions. We let −→mt denote the vector of market-capitalization

weights of the two stocks, and mj,t, j ∈ {1, 2}, its entries. Since the analysis of interest
pertains to asset 1, from now on we use W i

t to denote the wealth of all agents of type i that
participate in the market for stock 1; the relevant state variable is ωit ≡ W i

t /(W
R
t +W I

t ),
and to save notation we maintain the convention ωt ≡ ωRt . As stated in the text, ω̂t denotes
the wealth share of the investors who actively participate in the market for stock 1. We
also let ŵ2,t =

µ2,t−rt
σ2
2,t

denote the optimal portfolio holding of stock 2 by investors who don’t

participate in stock 1, and −→w i
t is the (row) vector of portfolio holdings of an investor i ∈ {I, R}

that is active in the market for stock 1. Finally,
−→
B t ≡ (B1,t, B2,t)

⊤.
We further define

−→
B t ≡

[
B1,t

B2,t

]
, σt =

[
σ1,t btσ2,t
0 σ2,t

]
, −→φ =

[
φ
0

]
, −→η =

[
η
0

]
. (F.1)

The entry and exit into market 1 happens either for endogenous or exogenous reasons. By
“endogenous” we mean that investors conduct a cost-benefit analysis before deciding whether
to keep paying attention to the market for stock 1. In addition to this optimizing choice, we
assume that investors enter and exit the market for exogenous reasons. This exogenous flux
of investors is modeled with the sole purpose of making the model solution more tractable
and transparent.

Specifically, with W i
t the (aggregate) wealth of type-i investors that participate in market

1, we assume

dW i
t = dW i,part

t +θ
(
νi(W I

t +WR
t )−W i

t

)
dt−1i=R×

W I
t +WR

t

1− ωt
dFt+ω

i
t (dLt − dNt) , (F.2)

where dW i,part
t is the wealth growth of all investors of type i ∈ {I, R) who already participate

in the market for stock 1.58 The term θ
(
νi(W

I
t +WR

t )−W i
t

)
dt reflects entirely exogenous,

58. For completeness, dW i,part
t =W i,part

t µi
W dt+W i,part

t (−→w i)⊤σtd
−→
B t where

µi
W = rt + π + nt + (−→w i

t,s)
⊤
(
−→µ t − rt12×1 + λit,s

[
1
0

])
− cit,s
W i

t,s

.
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non-optimizing entry, which happens at some rate θ.
As in the baseline model, we are assuming that this exogenous entry-and-exit process

affects the composition, but not the sum, of W I
t +WR

t , since∑
i∈{I,R}

θ
(
νi
(
W I
t +WR

t

)
−W i

t

)
= 0.

The term −1i=R×W I
t +W

R
t

1−ωt
dFt captures the endogenous exit of R investors. As we described

in the text, the (singular) process dFt is constructed so that ωt stays below the critical value
ω of ωt (see (F.3) below) that ensures V R(ωt) > 0 for ωt < ω.

Mostly for technical tractability reasons, we assume another source of exogenous entry
and exit, which is reflected in the term ωit (dLt − dNt) on the right-hand side of (F.2). This
entry and exit process leaves the composition of wealth in the market (between R and I
investors) unaffected, but ensures that the wealth of the investors who pay attention to the
market 1 stays proportional to the “size” of market 1. Specifically, we define dLt and dNt as
the two singular, increasing processes that control W I

t +W
R
t so that the ratio of stock market

capitalization of asset 1 to the total wealth of investors participating in market 1, m̃t =
M1,t

W I
t +W

R
t
, stays constant across time (m̃t = m̃).59 Because (dLt − dNt) is multiplied by ωit, this

exogenous entry-and-exit process does not impact the composition of wealth between R and I
investors. The purpose of this exogenous entry-and-exit term is transparency and tractability:
By ensuring a constant m̃t, if there were no differences of opinion (η = 0), the excess return,
the price-dividend ratio, and the volatility of stock 1 would all be constant. Thus, we can
eliminate a state variable from the problem, namely the ratio of market capitalization to
the total wealth of investors in market 1. Economically, this means that we can abstract
from the effects of limited participation (that have been studied extensively in the literature)
and isolate the impact of shorting frictions. It is also worth highlighting that the term
ωit (dLt − dNt) endogenously approaches zero as δ1 and θ approach infinity.60 Thus, our
computations would be approximately valid if we eliminated the term ωit (dLt − dNt), as long
as the analysis focuses on cases where investors are short-termist (θ is large) and the ratio of
the dividends of a typical tree 1 to tree 2 mean reverts fast.

Having described the entry and exit of investors into the market for stock 1, we are ready
to state a formal result describing the determination of equilibrium in this economy. For
simplicity, we assume that the Brownian motions B1,t and B2,t are independent.

Proposition 7 Using the expressions for wit, κ1,t (with b = 0), and yt from Proposition 6,
the wealth share ωt follows the diffusion process

dωt = µω(ωt)dt+ σω(ωt)dB1,t − dFt, (F.3)

where Ft is an increasing (singular) process that reflects ωt to remain below the value ω that

59. These processes can be uniquely constructed from the running maximum and minimum of the difference
between (WR

t +W I
t )−M1,t. For details see Karatzas and Shreve (2012, p. 210) on the Skorohod equation.

60. The reason is that the price-dividend ratio and the ratio of the dividend processes for the two trees
(given in (34)) approach constants, thus implying that m̃t approaches a constant (m̃).
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is the lowest value for which V R(ωt) = 0, and µω(ωt) and σω(ωt) are given by

µω(ωt) = ωt

((
wR1,t − m̃

)
σ1,t (κt − σ1,tm̃) + 1wR

1,t<0w
R
1,tφ+

ytm̃

1− yt
φ (1− τ)

)
+ (F.4)

θ (ν − ωt) ,

σω(ωt) = ωt
(
wR1,t − m̃

)
σ1,t, (F.5)

where σ1,t =
p′(ωt)
p(ωt)

σω(ωt)+σ1,D is the volatility of stock 1 and the price-dividend ratio pt = p(ωt)
solves the ordinary differential equation

1

2

∂2p

∂ω2
t

(σω(ωt))
2+

∂p

∂ωt
(µω(ωt) + (σ1,D − κ1,t)σω(ωt))− p (r + δ1 + κ1,tσ1,D)+1 = 0 (F.6)

in the region 0 ≤ ωt ≤ ω.

Remark 4 Since there are multiple equilibrium values for wit, κ1,t, and yt in Proposition
7, there exist a large set of solutions for p(·) and ω, depending on the equilibrium on which
agents coordinate at each value of ωt.

The expressions for µω and σω in Proposition 7 coincide with (30) and (29) when m̃ = 1,
θ = π, and σ1,t = σD.

61 Moreover, with the dividend growths of stocks 1 and 2 being
independent, so are their stock-price processes (in the limit where stock 1 becomes small) and
the expressions for yt, w

i
1,t, and κ1,t in Proposition 7 (with m̃ = 1 and σ1,t = σD) coincide

with the respective expressions in the baseline model. Finally, if ε = 0, then ω = 1, as in the
baseline model. In short, if one dropped the goods-market clearing requirement from the
baseline model, the resulting expression for the price-to-dividend ratio would be given by
(F.6) (with m̃ = 1 and ε = 0).

The main complications with solving (F.6) are that a) it is a non-linear ODE62 and b) for
ε > 0, this ODE is to be solved over a domain of values of ωt on which V R(ωt) > 0, with

V R(ω) = 0 and dV R(ω)
dω

= 0 as boundary conditions.
We solve (F.6) with iterated use of MATLAB’s ODE boundary value problem solver

BVP5c. We start with the initial guess σ1,t = σ1,D. With that initial guess for σ1,t we solve
the ODE for V R(ωt) using BVP5c for various boundaries ω until we find the value of ω that

satisfies the boundary conditions V R(ω) = 0 and dV R(ω)
dω

= 0. With this ω we compute the
solution of the ordinary differential equation (F.6) on the interval (0, ω] using the BVP5c solver
and utilizing the (reflecting) boundary condition p′(ω) = 0. After obtaining the price-dividend

ratio, p(ωt) and its derivative, we evaluate p′(ωt)
p(ωt)

, and compute σ1,t =
p′(ωt)
p(ωt)

σω(ωt)+σ1,D. Using
this new guess for σ1,t we repeat the above procedure until convergence. For our numerical
exercise, we assume that m̃ = 1, to make the expressions for the Sharpe ratio, utilization, etc.
directly comparable with the baseline model. The rest of the parameters are described in the
text.

61. To see this, substitute the expression for the equilibrium interest rate (28) into (30).
62. Equation (F.6) is non-linear because µi

t and σ
i
t depend on σ1,t, which in turn depends on p(·) and p′(·).
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Figure F.1: An illustration of the short-run and long-run effects of an equilibrium shift.

F.1 The dependence of the price-dividend ratio on equilibrium
coordination

To better explain how an equilibrium shift impacts the dynamics of the wealth shares and
the Sharpe ratio, it is useful to refer to Figure F.1. The dash-dotted black line plots the
Sharpe ratio values associated with the no shorting equilibrium. The blue dotted line shows
the Sharpe ratios associated with the high shorting equilibrium. To the left of ω∗

1 the Sharpe
ratio is depicted by the blue line and is unique. Similarly, to the right of ω∗

2 the Sharpe
ratio is unique and depicted by the dash-dotted black line. Conditional on being in the high
shorting equilibrium (point A), a shift from the high to the no shorting equilibrium can be
decomposed into an “immediate” and an “eventual” effect. Figure F.1 illustrates the two
effects. The first effect captures the immediate upward jump of the Sharpe ratio, and is
depicted as a movement from point A to point B. We use the term “immediate” for this
effect because the wealth shares are kept fixed. But the equilibrium shift also changes the
dynamics of the wealth shares. As a result, the new typical stationary range of values of ω
changes, and this is depicted as a move from point B to point C. In Figure F.1 the typical
values of ω in the no shorting equilibrium are in the range D–E, while in the high shorting
equilibrium, they are in the range F–G. When the market coordinates on the high shorting
equilibrium, the associated typical values of the Sharpe ratio are the green points; similarly,
when the market coordinates on the no-shorting equilibrium, the associated typical values
of the Sharpe ratio are the red points. According to a Campbell-Shiller decomposition, the
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log price-dividend ratio depends on the (geometrically-weighted) values of the risk premium
over the infinite horizon. This average across the green points exceeds the respective average
across the red points, and therefore the price-dividend ratio when agents coordinate on the
high-shorting equilibrium is lower. (Intuitively, in the high shorting equilibrium the wealth
shares places a significant mass to the right of ω∗

2, where the shorting market is inactive and
the Sharpe ratio is particularly high.)

The small attention costs accelerate the transition from point A to point C. Upon an
equilibrium shift to the no shorting equilibrium, a mass of short sellers endogenously chooses
to exit the market for the small stock, thus making the transition from A to C essentially
instantaneous.

G Adding a Non-Pecuniary Cost to Short Selling

In this section we make one change to the baseline model to allow for an additional —
non-pecuniary — cost to shorting, meant to capture the increased burden of regulatory
compliance brought about by the overhaul of Regulation SHO in 2008.

Specifically, suppose that the utility is given by

V i
t =

∫ ∞

t

e−(ρ+π)(u−t)
(
log ciu +

χ

ρ+ π
wu × 1wu<0

)
du, (G.1)

where χ
ρ+π

wu × 1wu<0 captures this added regulatory burden.
As is intuitive, the higher cost to shorting depresses the demand for shorting, which

in turn reduces portfolio heterogeneity across agents and therefore the variability of their
relative wealths, as measured by |σω|. It follows that the volatility of the utilization ratio y
also drops, too, at least for values of ωt that are small enough.

We can state the following formal result.

Proposition 8 (i) For ωt such that the shorting market is active, the stable utilization ratio
y+ > 0 decreases with χ. (ii) The diffusive variance σ2

ω of ωt decreases with χ. (iii) For
values ωt sufficiently low, the diffusive variance of y, denoted by σ2

y, decreases with χ.

H Proofs

Proof of Proposition 1. Fix parameters η > 0 and ψ > 1 and define φ according to

φ = σD (η − ψσD) (H.1)

for any value of σD. Note that when σD is sufficiently small, φ is guaranteed to be positive.
We show next that, as σD gets close to zero, Assumption 2 is satisfied. Rearranging (H.1)

gives

η
φ
σD

=
1

1− ψ σD
η

. (H.2)
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For sufficiently small σD we obtain

1 + τ >
1

1− ψ σD
η

> 1. (H.3)

Combining (H.2) and (H.3) yields (23).
Turning to (24), we note that the definition of ω∗

1 along with (H.1) implies

ω∗
1 = 1− σD

ψσD
=
ψ − 1

ψ
> 0,

while also

lim
σD→0

σD
(1 + τ) φ

σD
− η

= lim
σD→0

σD
(1 + τ) (η − ψσD)− η

= 0.

Therefore, for sufficiently small σD, the left-hand side of (24) converges to ψ−1
ψ

> 0, while the
right-hand side converges to zero, and therefore the inequality holds.

We conclude the proof by showing that F (ω) has a unique root in the interval (ω∗
1, 1). To

this end, it is useful to introduce the definitions

A(ω) ≡ τ
ω

σD
φ, (H.4)

B(ω) ≡ σD − ω

(
(1 + τ)

φ

σD
− η

)
, (H.5)

C(ω) ≡ ω

1− ω

(
σD + (1− ω)

(
φ

σD
− η

))
. (H.6)

With these definitions, F (ω) can be written as F (ω) = B2(ω)− 4A(ω)C(ω). We start by
observing that C (ω∗

1) = 0 for any parametric choice (since the definition of ω∗
1 in equation

(21) implies σD+(1− ω∗
1)
(

φ
σD

− η
)
= 0). Also, Inequality (24) implies that B (ω∗

1) ̸= 0, and

thus B2 (ω∗
1) > 0. Accordingly, F (ω∗

1) > 0. Also B (1) <∞, while C (1) = ∞. By continuity,
there exists at least one value ω∗

2 ∈ (ω∗
1, 1) such that F (ω∗

2) = 0.
To show that this value is unique, consider any value ω∗

2 ∈ (ω∗
1, 1) such that F (ω∗

2) = 0.
We next show that F ′(ω∗

2) < 0.
To this end, note that

F ′(ω) = 2B(ω)B′(ω)− 4 [A′(ω)C (ω) + A(ω)C ′(ω)]

= 2B2(ω)
B′(ω)

B(ω)
− 4A(ω)C(ω)

(
A′(ω)

A(ω)
+
C ′(ω)

C(ω)

)
.

Since ω∗
2 is a root of F (ω) it follows that B2 (ω∗

2) = 4A (ω∗
2)C (ω∗

2) . Therefore,

F ′ (ω∗
2) = B2 (ω∗

2)

(
2
B′ (ω∗

2)

B (ω∗
2)

− A′ (ω∗
2)

A (ω∗
2)

− C ′ (ω∗
2)

C (ω∗
2)

)
. (H.7)
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We have

A′ (ω∗
2)

A (ω∗
2)

=
1

ω∗
2

B′ (ω∗
2)

B (ω∗
2)

= −
(1 + τ) φ

σD
− η

σD − ω∗
2

(
(1 + τ) φ

σD
− η
)

and

C ′ (ω∗
2)

C (ω∗
2)

=
1

ω∗
2 (1− ω∗

2)
+

η − φ
σD

σD + (1− ω∗
2)
(

φ
σD

− η
) .

Combining terms gives

2
B′ (ω∗

2)

B (ω∗
2)

− A′ (ω∗
2)

A (ω∗
2)

− C ′ (ω∗
2)

C (ω∗
2)

(H.8)

= −
2
(
(1 + τ) φ

σD
− η
)

σD − ω∗
2

(
(1 + τ) φ

σD
− η
) − 1

ω∗
2

− 1

ω∗
2 (1− ω∗

2)
−

η − φ
σD

σD + (1− ω∗
2)
(

φ
σD

− η
) .

For future reference, we note that using ω∗
2 > ω∗

1 along with (23) and the definition of ω∗
1

implies that

σD + (1− ω∗
2)

(
φ

σD
− η

)
> σD + (1− ω∗

1)

(
φ

σD
− η

)
= 0. (H.9)

Using (H.1) we can write the right-hand side of (H.8) as

− 2 ((1 + τ) (η − ψσD)− η)

σD − ω∗
2 ((1 + τ) (η − ψσD)− η)

− 1

ω∗
2

− 1

ω∗
2 (1− ω∗

2)
− ψ

1− ψ (1− ω∗
2)
. (H.10)

Taking the limit as σD approaches zero, the expression (H.10) converges to

− 1

1− ω∗
2

− ψ

1− ψ (1− ω∗
2)
< 0,

where the inequality follows from (H.9) along with (H.1).63

The fact that the derivative F ′ (ω∗
2) < 0 for any root of the equation F (ω∗

2) = 0 in the
interval (ω∗

1, 1) implies that the root ω∗
2 must be unique.

Proof of Proposition 2. In preparation for the proof, we state and prove an auxiliary
result.

63. Equation (H.1) implies φ
σD

− η = −ψσD, and therefore 0 < σD + (1− ω∗
2)
(

φ
σD

− η
)

=

σD (1− (1− ω∗
2)ψ), where the inequality follows from (H.9).
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Lemma 1 The following statements hold for the quadratic equation (26).

1. ω∗
1 < ω∗

2 and the discriminant of (26) is non-negative for all ωt ≤ ω∗
2.

2. When ω∗
1 ≤ ωt ≤ ω∗

2, the two roots of the equation are both in the interval [0, 1).

3. For ωt ∈ [0, ω∗
1), only the larger root of (26) is in the interval (0, 1) .

4. If y is a root of (26), then (1− ωt) η − σD − 1−ωt

σD
φ (1− τy) > 0.

Proof of Lemma 1. We start with part 1. Using the definitions (H.4)–(H.6), equation
(26) can be written in the familiar form

A (ωt) y
2 +B (ωt) y + C (ωt) = 0,

and the discriminant of this quadratic equation is given by F (ωt) as defined in equation (22).
For ωt ≤ ω∗

1, C (ωt) < 0 and the discriminant, B2 (ωt)− 4A (ωt)C (ωt), is positive. The
assumption that ω∗

2 is the unique root of F (ω) along with the facts that F (ω∗
1) = B2 (ω∗

1) > 0
and F (1) = −∞ imply that ω∗

1 < ω∗
2.

64 The uniqueness of the root ω∗
2 also implies that

F (ωt) = B2 (ωt)− 4A (ωt)C (ωt) ≥ 0 for all ωt ≤ ω∗
2.

We now turn to part 2. To economize on notation we write A rather A (ωt) and similarly for
B and C. Fix a given ωt and let g (y) = Ay2+By+C.We have g (1) = A+B+C = σD

1−ωt
> 0

and g′ (1) = 2A+B = σD + ωt

(
η − (1− τ) φ

σD

)
> 0, where the inequality follows from (23).

Since A > 0, it follows that all roots of g (y) must be smaller than one. Also, the fact that
ωt ≥ ω∗

1 implies that g (0) = C > 0, while assumptions (23) and (24) together with the fact
that ωt ≥ ω∗

1 imply that g′ (0) = B < 0.
The facts that i) g(y) is a convex, quadratic function of y, ii) g (1) > 0, g(0) > 0, g′ (1) > 0,

and g′ (0) < 0 and iii) B2 − 4AC > 0 for ωt ∈ [ω∗
1, ω

∗
2) imply that there are two roots in

(0, 1) .
For part 3, we note that, when ωt < ω∗

1, g (0) = C < 0, while g (1) = A+B+C = σD
1−ωt

> 0.
Therefore there exists one and only one root in (0, 1) .

Finally, let y ∈ (0, 1) denote a root of the quadratic equation (26). Accordingly,

(1− ωt) η − σD − (1− ωt)
φ

σD
(1− τy) =

1− ωt
ωt

y

(
σD + ωtη − ωt

φ

σD
(1− τy)

)
=

1− ωt
ωt

y

(
σD + ωt

(
η − φ

σD

)
+ ωt

φ

σD
τy

)
> 0,

where the last inequality follows from (23). This proves property 4.

We now continue with the proof of the proposition. We provide expressions for rt and κt
that apply in any equilibrium in which wRt ̸= 0. Since

∑
i

ωit = 1, it follows that
∑

i σ
i
t = 0

64. Assumption (24) implies that B (ω∗
1) ̸= 0 and therefore B2 (ω∗

1) > 0.
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and
∑

i µ
i
t = 0. Using (29) and

∑
i σ

i
t = 0 implies that

∑
i ω

i
tw

i
t = 1. Combining

∑
i ω

i
tw

i
t = 1

with (12) along with the definition yt =
W−

t

W+
t

gives

κt + (1− ωt) η +

(
ωt

1

σD
φ+ (1− ωt) τyt

1

σD
φ

)
1{wR

t <0} = σD. (H.11)

Similarly, using (30) along with
∑

i µ
i
t = 0 and

∑
i ω

i
t (nt + wits

i
t) = 0 gives (28).

We next describe the equilibria for the three intervals of ωt described in the statement of
the proposition.

i) In this case, ωt > ω∗
2. The equilibrium prescribes non-negative portfolios for both

investors. If ωt > 1− σD
η
, equation (H.11) implies that κt > 0 and (12) implies that both

investors hold positive portfolios and the shorting market is inactive. If ωt ∈ [ω∗
1, 1 − σD

η
),

then there exists an equilibrium that involves no shorting and a zero portfolio for investor
R. We check this assertion by observing that the associated market clearing requirement
becomes (1− ωt)w

I
t = 1, which together with yt = 0 leads to (25). We then note that

κt +
φ

σD
=

σD
1− ωt

− η +
φ

σD
(H.12)

>
σD

1− ω∗
1

− η +
φ

σD

=0.

The first line follows from (25), the second line follows from ωt > ω∗
1 and the third line follows

from the definition of ω∗
1. Since κt +

φ
σD

> 0, investor R does not choose a negative portfolio.
And since κt < 0 for ωt ∈ [ω∗

1, 1− σD
η
), the investor chooses a zero portfolio.

ii) In this case, ω∗
1 < ωt < ω∗

2. Since ωt > ω∗
1, equation (H.12) implies that the no-shorting

equilibrium continues to be an equilibrium. There exist, however, two more equilibria. To
compute them, we guess (and verify shortly) that wRt < 0. Using (12) and (H.11) gives

yt =
W−
t

W+
t

=
−ωtwRt,s

(1− ωt)wIt,s
=

ωt
1− ωt

−
(
κt +

1
σD
φ
)

κt + ηt +
1
σD
φτyt

=
ωt

1− ωt

(1− ωt) η − σD − 1−ωt

σD
φ (1− τyt)

σD + ωtη − ωt

σD
φ (1− τyt)

.

Rearranging leads to (26). Statement 1 of Lemma 1 implies that, when ωt ∈ (ω∗
1, ω

∗
2), equation

(26) has two roots in (0, 1). Under the supposition that wRt < 0, equation (H.11) leads to
(27). In turn

κ±t +
φ

σD
= σD − (1− ωt) η −

ωt
σD

φ

(
1 + τy±

1− ωt
ωt

)
+

φ

σD

= σD − (1− ωt)

(
η +

φ

σD

(
1− τy±t

))
< 0, (H.13)

where the last inequality follows from statement 4 of Lemma 1. Combining this observation
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with (12) confirms that wRt < 0. Note that in the second and third equilibria we have that

κ±t + ηt +
1

σD
φτy±t = σD + ωtη −

φωt
σD

(
1− τy±t

)
> 0,

where the last inequality follows from (H.13) along with the fact that y± satisfy the equation
(26). This implies that wIt > 0.

iii) In this case, ωt < ω∗
1. Statement 3 of Lemma 1 implies that the quadratic equation

(26) has only one solution in (0, 1) . This shows that there can only be one equilibrium with
shorting. Moreover, this is the unique equilibrium. If wRt were zero and the Sharpe ratio
were σD

1−ωt
− η, then the inequality in (H.12) reverses, i.e., σD

1−ωt
− η + φ

σD
< 0 and investor R

would want to deviate from the equilibrium prescription and choose a negative portfolio.
The dynamics of the wealth share follow from a straightforward application of Ito’s lemma.

Lemma 2 When the equilibrium is unique, 0 < Φ < 1.

Proof of Lemma 2. We start by noting that an application of the implicit function theorem

to (26) gives dy
dη

= 1−y
Z′(y)

, where Z (y) ≡ y
(
η + σD

ωt
− φ

σD
(1− τy)

)
−
(
η − σD

1−ωt
− φ

σD
(1− τy)

)
.

Z (y) is a quadratic equation in y with positive leading coefficient, and satisfies Z (0) < 0
when ωt < ω∗

1. There consequently exists a unique value y > 0 such that Z (y) = 0; for this
value, Z ′ (y) > 0. Hence, dy

dη
> 0.

Next note that Gy = κ+ η+2 φ
σD
τy > 0, Gκ = y+ ωt

1−ωt
> 0, and Gη = y > 0. This proves

Φ > 0.
Finally, note that Z (y) = G (y, κ (y)). Therefore, Z ′ (y) = Gy+Gκ

dκ
dy

= Gy (1− Φ) . Since

Z ′ (y) > 0 at the equilibrium value of y, it follows that Gy (1− Φ) > 0. Since Gy = y > 0, it
follows that Φ < 1.

Proof of Proposition 3. We note first that, for w ≤ 0, the function

ι(w, κ) ≡ w (κσD + φ)− 1

2
(wσD)

2 (H.14)

is decreasing in κ, and therefore it attains a higher maximum for equilibrium B (since
κB < κA).

It immediately follows that

gBt − gAt = −
(
κBt − κAt

)
σD +max

w≤0
ι(w, κBt )−max

w≤0
ι(w, κAt ) ≥ 0.

We further have, based on the expressions for gt and µω (equation (30)),

µBω (ωt)− µAω (ωt) = ωt
(
gBt − gAt

)
+

1

2
ωt
(
wBt (w

B
t − 2)− wAt (w

A
t − 2)

)
σ2
D

= ωt
(
gBt − gAt

)
+

1

2
ωt
(
wBt − wAt

)
(wBt + wAt − 2)σ2

D

> 0,
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with both of the factors in parentheses in the second term on the right-hand side of the
second-to-last line being negative (since wBt < wAt < 0).

Proof of Proposition 4. We start by describing the determination of the equilibrium in
this case. Fix a time t and let E denote expectations with respect to the wealth distribution
over types η at time t. (For notational simplicity, we remove time-subscripts throughout the
proof.) For a given Sharpe ratio κ and anticipated utilization ration y, define the following
two functions, giving the aggregate long and short positions, respectively.

L(y, κ) = E
[
σ−1

(
η + κ+ σ−1τyf(y)

)+]
(H.15)

S(y, κ) = E
[
σ−1

(
η + κ+ σ−1f(y)

)−]
. (H.16)

An equilibrium is defined through the two market-clearing conditions

1 = L(y, κ)− S(y, κ) (H.17)

y =
S(y, κ)

L(y, κ)
. (H.18)

Furthermore, (H.17) defines κ uniquely as a function of y, so that we can write S(y) =
S(y, κ(y)) and L(y) = L(y, κ(y)), and the equilibrium determination comes down to

F (y) ≡ S(y)

L(y)
= y. (H.19)

The remainder of the proof is organized as follows. We start by showing that, given y1 with
h′(y1) < 0, a continuous distribution with connected support (thus the density does not drop
to zero on an intermediate range to then become positive again) exists for which F ′(y1) > 1.
Using this property, we show that there exist multiple equilibria for this distribution. The
continuity of the problem then ensures that, for any sequence of distributions converging to
the one we construct,65 a sequence of equilibrium utilization rates y

(n)
1 obtain that converges

to y1, and consequently F ′
(
y
(n)
1

)
> 1 for n large enough. In this sense, the set of type

distributions admitting multiple equilibria is not “knife-edge” or even sparse, but in fact has
non-empty interior.

For convenience, we define h̄(y) = h(y)
σ

and note that h̄′(y) < 0 is equivalent to h′(y) < 0.
Equation (H.17) implies that

κ(y) =
σ − ωSηS − ωLηL −

(
ωS f(y)

σ
+ ωLτy f(y)

σ

)
ωS + ωL

, (H.20)

65. Convergence in the space of distribution is defined in terms of convergence of expectations of any smooth
function with compact support.
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where we defined the quantities

ωL = E
[
1{η+κ+σ−1τyf(y)≥0}

]
(H.21)

ωS = E
[
1{η+κ+σ−1f(y)≤0}

]
(H.22)

ηL = E
[
η | η + κ+ σ−1τyf(y) ≥ 0

]
(H.23)

ηS = E
[
η | η + κ+ σ−1f(y) ≤ 0

]
. (H.24)

(These quantities depend on y, but we suppress that dependence in our notation.)
Furthermore, one can differentiate the same equation (H.17) with respect to y to obtain

κ′ (y) = −σ−1ω
Sf ′ (y) + τωL (f (y) + yf ′ (y))

ωS + ωL
, (H.25)

where we have made use of the fact that d
dx
E[(g(x, η))+] = E

[
d
dx
g(x, η)1{g(x,η)≥0}

]
for an

arbitrary differentiable function g, given that the distribution of η is absolutely continuous.
Using equations (H.16) and (H.20) and the definitions of h(y) and h̄(y), we compute

S(y) = σ−1 ωLωS

ωL + ωS

(
ηL − ηS − σ

ωL
− h̄ (y)

)
= B−1(A− h̄(y)) (H.26)

F (y) =
ηL − ηS − σ

ωL − h̄ (y)

ηL − ηS + σ
ωS − h̄ (y)

=
A− h̄(y)

A+B − h̄(y)
, (H.27)

where we also defined

A ≡ ηL − ηS − σ

ωL
(H.28)

B ≡ σ

ωS
+

σ

ωL
. (H.29)

Noting now, using (H.16) and (H.25), that

S ′(y) = −σ−1 ωLωS

ωS + ωL
h̄′ (y) = −B−1h̄′(y), (H.30)

we use (H.26) and (H.30), as well as F (y) = S(y)
L(y)

= S(y)
1+S(y)

= 1− 1
1+S(y)

, to write

F ′(y) =
S ′(y)

(1 + S(y))2
=

−Bh̄′(y)(
A+B − h̄′(y)

)2 . (H.31)

Our intermediate goal, therefore, is to show that, given h̄′(y1) < 0, values A and B exist
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satisfying

A− h̄(y1)

A+B − h̄(y1)
= y1 (H.32)

−Bh̄′(y1)(
A+B − h̄(y1)

)2 = 1 + ε > 1 (H.33)

for some ε > 0. In fact, for any ε > 0, solutions A and B to these equations are given by

B = (1− y1)
2

∣∣h̄′ (y1)∣∣
1 + ε

> 0 (H.34)

A = h̄ (y1) +B
y1

1− y1
= h̄ (y1) + y1 (1− y1)

∣∣h̄′ (y1)∣∣
1 + ε

> h̄(y1). (H.35)

To show the existence of a distribution yielding these desired values of A and B, we first
note that the right-hand side of (H.29) can be made arbitrarily close to 4σ while keeping
ωL + ωS < 1, and therefore condition b) of the proposition ensures that such ωL and ωS exist
delivering B for a small enough ε. Fixing ωL and ωS, ηL and ηS can be chosen arbitrarily
subject to (H.28) delivering the desired value of A. We therefore now have the value of κ(y1),
which determines the sets of types that go long, respectively short, the asset. Finally, the
density of the distribution on each of these two sets can be chosen freely subject to the two
integrals defining ωL and ηL, respectively ωS and ηS. In the complementary, intermediate
type region in which agents are inactive, the density is only subject to a total mass condition.

Finally, with Y = min{1, y | h̄(y) = A}, either Y < 1 and F (Y ) = 0 < Y or F (Y ) =
F (1) < 1 = Y . Since F (Y ) < Y in either case, and F ′ (y1) > 1, a value y2 ∈ (y1, Y ) exists
such that y2 = F (y2). Thus, a second equilibrium exists.

Proof of Proposition 6. The proof essentially repeats the steps from the one-risky asset
case, so we provide only a sketch, focusing on the elements that differ.

With these definitions, the market clearing condition is

ω̂t
∑

i∈{I,R}
ωit
−→w i

t + (1− ω̂t)

[
0
ŵ2,t

]
= −→mt. (H.36)

We consider first an equilibrium with yt > 0. Investor R’s and I’s optimal portfolios are
given by

−→w R
t = (σtσ

′
t)

−1
(−→µ t − rt12×1 +

−→φ ) , (H.37)
−→w I

t = (σtσ
′
t)

−1
(−→µ t − rt12×1 + σ1,t

−→η + τyt
−→φ ) . (H.38)

77



Using (H.37) inside (H.36) yields

(σtσ
′
t)
−→mt = ω̂t (ωt (

−→µ t − r1N +−→φ ) + (1− ωt) (
−→µ t − r1N + σ1

−→η + τyt
−→φ ))

+ (1− ω̂t) (σtσ
′
t)

[
0

µ2,t−r
σ2
2,t

]
. (H.39)

Next we use the row selection vector [0, 1] to pre-multiply both sides of (H.39). Noting
that [0, 1]−→φ = [0, 1]−→η = 0, and also

(σtσ
′
t)

[
0

µ2,t−r
σ2
2,t

]
=

[
bt (µ2,t − r)
µ2,t − r

]
, (H.40)

leads to (E.6). We next note that

[1,−bt]σtσ′
t

[
m1,t

m2,t

]
= [σ1,t, 0]

[
σ1,t 0
btσ2,t σ2,t

] [
m1,t

m2,t

]
(H.41)

= σ2
1,tm1,t.

Pre-multiplying both sides of (H.39) with the row vector [1,−bt], using (H.40), (H.41),
and the definition of κ1,t, and re-arranging yields

κ1,t = m̃1,tσ1,t − (1− ωt) η −
φ

σ1,t
(ωt + (1− ωt)τyt) . (H.42)

Using the definition of κ1,t inside (H.37) gives

wR1,t =
κ1,t
σ1,t

+
φ

σ2
1,t

(H.43)

wI1,t =
κ1,t + η

σ1,t
+
τytφ

σ2
1,t

, (H.44)

where we used the notation wi1,t, i ∈ {R, I}, to denote the first element of wit.

Using the market clearing condition yt = −ωR
t w

R
1,t

ωI
tw

I
1,t

= − ωtwR
1,t

(1−ωt)wI
1,t

leads to (E.3).

If agent R chooses not to short then the market clearing condition becomes

ω̂t(1− ωt)
−→w I

t + (1− ω̂t)

[
0
ŵ2,t

]
= −→mt. (H.45)

Substituting in −→w I
t from (H.38) and pre-mutiplying by σtσ

′
t gives

(σtσ
′
t)
−→mt = ω̂t(1− ωt) (

−→µ t − r1N + σ1
−→η ) + (1− ω̂t) (σtσ

′
t)

[
0

µ2,t−r
σ2
2,t

]
. (H.46)
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Premultiplying (H.46) by the row [1,−bt] and using (H.40) and (H.41) gives

σ2
1,tm̃1,t = (1− ωt)σ1,t (κ1,t + η) ,

and therefore

κ1,t = σ1,t
m̃1,t

1− ωt
− η. (H.47)

Finally, when both agents hold positive portfolios, the optimal portfolios are −→w R
t =

(σtσ
′
t)

−1 (−→µ t − rt12×1),
−→w I

t = (σtσ
′
t)

−1 (−→µ t − rt12×1 + σ1,t
−→η ). Repeating the arguments in

equations (H.37)–(H.42), we obtain κ1,t = m̃1,tσ1,t − (1− ωt) η.

Proof of Proposition 7. It remains to derive the differential equation in Proposition 7.
Using the market clearing condition

∑
i∈{I,R} ω

i
tw

i
1,t = m̃, and applying Ito’s Lemma to

ωit =
W i

t

W I
t +W

R
t

leads to

dωit = µiω,tdt+ σiω,tdB1,t (H.48)

with

µiω,t = ωit
[(
wi1,t − m̃

)
σ1,t (κt − σ1,tm̃) + wi1,tλ

i
t + ñt

]
+ θ

(
νit − ωit

)
,

σiω,t = ωit
(
wi1,t − m̃

)
σ1,t,

and66

ñt ≡ −
∑

i∈{I,R}
wi1,tωt

iλit =
ytm̃

1− yt
ft (1− τ) .

Since ϕ1
ϕ2

≈ 0, the aggregate endowment follows a geometric Brownian motion in the limit,
and the interest rate is constant rt = r. Accordingly, the price of a stock of type 1 follows
the dynamics

dP1,t,s +D1,t,sdt

P1,t,s

= (r + κ1,tσ1,t)dt+ σtdB1,t. (H.49)

Applying Ito’s Lemma to the product P1,t,s = p (ωt)D1,t,s also implies that

dP1,t,s

P1,t,s

=
dpt
pt

+
dD1,t,s

D1,t,s

+
p′ (ωt)

p (ωt)
σRω,tσ1,Ddt. (H.50)

66. Using
∑

i∈{I,R} w
i
1,tω

i
t = m̃t, the definition yt = −

wR
1,tωt1{wR

1,t<0}

wI
1,tω

I
t

and the definition of λit leads to

−
∑

i∈{I,R}
wi

1,tω
i
tλ

i
t =

ytm̃

1− yt
ft (1− τ) .
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Combining (H.49) with (H.50) and using σ1,t =
p′(ωt)
p(ωt)

σRω,t + σ1,D and Ito’s Lemma to

compute the drift of dpt
pt

leads to

1

2

∂2p

∂ω2
t

(
σRω,t
)2

+
∂p

∂ωt

(
µRω,t + σRω,tσ1,D

)
− p× (r + δ1 + κ1,tσ1,t) + 1 = 0, (H.51)

which in turn leads to (F.6) after substituting σ1,t =
p′(ωt)
p(ωt)

σRω,t + σ1,D.

Proof of Proposition 8. Using a standard “guess-and-verify” approach, the modified
first-order conditions for portfolio choice of the two investors (conditional on the shorting
market being active, i.e., wR < 0) give

wR =
µ− r + f + χ

σ2
=
κ

σ
+
f + χ

σ2
(H.52)

wI =
µ− r + τfy

σ2
=
κ+ η

σ
+
τfy

σ2
. (H.53)

The consumption-to-wealth ratio for all investors continues to be ρ+ π and therefore the
price-dividend ratio is constant and given by 1

ρ+π
. As a result, the volatility σ is constant.

From this point on, repeating the steps summarized by equations (15)–(20), we obtain

y =
η − χ

σ
− σ

1−ω − f
σ
(1− τy)

η − χ
σ
+ σ

ω
− f

σ
(1− τy)

. (H.54)

We note that (H.54) is the same as (20), but with η replaced by η − χ
σ
. Applying the

implicit function theorem to (H.54) and focusing on the maximum shorting equilibrium
(which is the “stable” equilibrium) shows that dy

dχ
< 0. In addition, equation (H.52) together

with wRt < 0 and (29) implies dσω
dχ

> 0.67 These observations prove parts (i) and (ii).

For part (iii), consider the derivative of σ2
y =

(
dy
dω
σω
)2
:

dσ2
y

dχ
= 2

(
dy

dω

)2

σ2
ω

(
dσω
dχ

σω
+

d2y
dωdχ

dy
dω

)
. (H.55)

The term 1
σω

dσω
dχ

is negative because dσω
dχ

> 0 and σω < 0. The remainder of the proof shows

that also the second term inside the last parentheses,
(
dy
dω

)−1 d2y
dωdχ

, is negative for small ω. To

67. Using the expression for the equilibrium Sharpe ratio gives

wR − 1 =
κ

σ
+
f + χ

σ2
− 1 = − (1− ω)

( η
σ
− χ

σ2

)
+

f

σ2
(1− ω) (1− τy)

= − (1− ω)

[( η
σ
− χ

σ2

)
− f

σ2
(1− τy)

]
< 0.

Therefore
d(wR−1)

dχ = (1− ω)
[

1
σ2 − f

σ2 τ
dy
dχ

]
> 0, since dy

dχ < 0.
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start, the implicit function theorem gives the following expression68 for dy
dω
:

dy

dω
= σ

(1−ω)2y−ω2

(1−ω)2ω2

η + σ
ω
− f

σ
(1− τy)− χ

σ
− τ (1− y) f

σ

. (H.56)

We next show that dy
dω
> 0 for small enough ω. To see this, note that the larger root of

equation (H.54) satisfies limω→0 y (ω) = 0. Moreover, re writing equation (H.54) as

y

(
η − χ

σ
+
σ

ω
− f

σ
(1− τy)

)
= η − χ

σ
− σ

1− ω
− f

σ
(1− τy)

and taking the limit as ω → 0 on both sides implies that

σ lim
ω→0

y

ω
= lim

ω→0
y

(
η − χ

σ
+
σ

ω
− f

σ
(1− τy)

)
= lim

ω→0
η − χ

σ
− σ

1− ω
− f

σ
> 0. (H.57)

Therefore, for small enough ω y
ω2 is arbitrarily large and therefore the numerator in

(H.56) is positive. We also note that the denominator of dy
dω

is also positive for the (stable)

equilibrium associated with y+. Accordingly, dy
dω
> 0 for small enough ω.

Next, we totally differentiate dy
dω

with respect to χ and observe that the sign of
(
dy
dω

)−1 d2y
dωdχ

is the same as the sign of(
(1− ω)2

(1− ω)2 y − ω2
+

2τ f
σ

η + σ
ω
− f

σ
(1− τy)− χ

σ
− τ (1− y) f

σ

)
dy

dχ
(H.58)

− − 1
σ

η + σ
ω
− f

σ
(1− τy)− χ

σ
− τ (1− y) f

σ

.

As ω → 0, the term η + σ
ω
− f

σ
(1− τy)− χ

σ
− τ (1− y) f

σ
approaches infinity, and hence

the sign of the expression (H.58) is the same as the sign of (1−ω)2
(1−ω)2y−ω2

dy
dχ
, which as we argued

above has the same sign as dy
dχ
. An application of the implicit function theorem to (H.54)

shows that dy
dχ
< 0 (for the stable equilibrium y+). Accordingly,

dσ2
y

dχ
< 0 for sufficiently small

ω.

68. Note that equation (H.54) can be written as

H (y) ≡ y

(
η +

σ

ω
− f

σ
(1− τy)− χ

σ

)
−
(
η − σ

1− ω
− f

σ
(1− τy)− χ

σ

)
= 0

and therefore (H.56) follows from the implicit function theorem, dy
dω = −Hω

Hy
.
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Table I.1: Summary Statistics of Shorting fees.

Percentile

Size quintile 50th 75th 90th 95th 99th

1 0.41% 0.84% 2.96% 7.43% 28.48%
2 0.38% 0.50% 1.44% 3.97% 19.38%
3 0.36% 0.43% 0.86% 2.04% 12.30%
4 0.34% 0.39% 0.53% 1.02% 7.39%
5 0.35% 0.38% 0.43% 0.50% 1.72%

Total 0.37% 0.51% 1.24% 2.99% 13.85%

Lending fees by stock market capitalization quintile. Each year, we form 5 portfolios of Russell
3000 constituents sorted into size quintiles based on end-of-prior-year market capitalization.
Within each size quintile, we compute the pth percentile, p ∈ {50, 75, 90, 95, 99}, of daily
shorting fees over the following year. We then report the time-series average of these
percentiles from 2006 to 2021. Daily shorting fees from 2006 to 2021 are from Markit and are
reported as annualized percentage rates.

I Additional Empirical Results

I.1 Summary Statistics — IHS Markit

We start by reporting some summary statistics on lending fees. In Table I.1, we group Russell
3000 constituents based on their end-of-prior-year market capitalization into five quintiles.
We then fix the set of stocks in each quintile over the subsequent year and compute various
statistics (median, 75th percentile, etc.) of the daily lending fees for the stocks in each
quintile. We then average across the years. The table shows that the median lending fee
ranges between 0.35% and 0.41%. However, the table also shows that some of the observations
on lending fees can become quite large. For instance, for stocks that are in the size portfolios
1, 2, and 3, the 95-th percentile of fees exceeds 2% and the 99-th percentile exceeds 7% for
stocks in portfolios 1, 2, 3, and 4. This table suggests that sometimes even relatively large
stocks (by market capitalization) can exhibit sizable lending fees.

Table I.2 helps to illustrate this last point in greater detail. Specifically, Table I.2 reports
some stock-level statistics on lending fees, and in particular the fraction of Russell 3000
constituents for which a given percentile of shorting fees across time exceeds certain cutoffs.
The table shows that 96% of Russell 3000 constituents exhibit a lending fee in excess of 1% at
some point between 2006 and 2021, while 45% of stocks exhibit a fee in excess of 5% at some
point over that same time period. But even if we leave these extreme observations aside, and
focus on — say — the 95-th percentile of the distribution of lending fees at the stock level,
the numbers are large: 31% of Russell 3000 constituents exhibit a lending fee in excess of one
percent for 5 out of 100 trading days, while 18% of Russell constituents exhibit lending fees
in excess of 3% for 5 out out of 100 trading days.
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Table I.2: Stock-level distribution of shorting fees.

Shorting fee cutoffs

Percentile ≥1% ≥2% ≥3% ≥5% ≥10%

90th 0.23 0.16 0.12 0.09 0.05
95th 0.31 0.21 0.18 0.14 0.07
99th 0.50 0.32 0.26 0.21 0.13
99.5th 0.62 0.38 0.30 0.23 0.14
Maximum 0.96 0.79 0.66 0.45 0.27

Fraction of Russell 3000 constituents for which the indicated percentile (first column) of
daily shorting fees exceeds the cutoff noted in the header row. For example, the bottom
rightmost number (0.27) means that 27% of the stocks in the Russell 3000 had a maximum
daily shorting fee in excess of 10%. Similarly, the number 0.12 in the top row/ middle column
indicates that 12% of the stocks have a lending fee in excess of 3 percent for one out of the
ten trading days. Daily shorting fees from 2006 to 2021 are from Markit and are reported as
annualized percentage rates.

I.2 Heterogeneous h′(y)

For our baseline results we pooled observations across all stocks and estimated a single
function h′(y). Figure I.1 shows results for the case where we allow h′(y) to differ for each
stock. Specifically, we focus on observations that are on special (DCBS > 1) and estimate a
separate h′(y) for each Russell 3000 constituent. We then evaluate h′(y) for different values
of y for each stock separately. Subsequently, we pool all h′(y) values across all stocks and
present them as a bin-scatter diagram.69 Since stock-level estimates of h′(y) are noisy, we
trim stock-level estimates of h′(y) at the 5th and 95th percentile levels. (Results are similar if
we don’t trim and instead report medians by shorting-utilization bin.) The main conclusion
from Figure I.1 is similar to our conclusion in the text: for low values of y, h′(y) is negative.

69. Since the observations per stock are not in the millions (as they are for the pooled regressions in the
text), it is computationally feasible to use a kernel regression estimator with automatic, cross-validated,
bandwidth selection. We present the results for this alternative estimation method, as a check that our
conclusions are not driven by whether we use kernels or splines to estimate the non-parametric regression.
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Figure I.1: h′(y), binned-means from stock-level estimates using local-linear non-parametric kernel
regressions. For each stock, we estimate the marginal effect h′(y) at 11 points, corresponding to the
stock-level deciles, as well as the 5th and 95th percentiles of utilization for observations exhibiting
a Daily Cost of Borrowing Score (DCBS) over 1. Error bars represent 95% confidence intervals
around bin means. Data on shorting fees and shorting utilization are from Markit over the period
2006 to 2021.
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Figure I.2: h′(y) and f ′(y), binned-means from jump discontinuities. Estimated marginal effects
are calculated by dividing observed weekly changes in h(y) = f(y) (1− τ y) by observed weekly
changes in shorting utilization, restricting attention to weeks in which the magnitude of the change
in shorting utilization magnitude exceeds 10.5%, four times the standard deviation of absolute
changes in utilization. We calibrate τ to be 0.8 based on industry literature on the pass-through of
shorting fees to institutional investors. Sample consists of daily observations of shorting fees and
shorting utilization for Russell 3000 constituents. Error bars represent 95% confidence intervals
around bin means. Data on shorting fees and shorting utilization are from Markit over the period
2006 to 2021.
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Table I.3: Determinants of Utilization Jump Rate

(1) (2) (3) (4) (5) (6) (7)

1Fail - Satisfy −5.14∗∗∗ −4.78∗∗∗ −3.62∗∗∗ −5.28∗∗∗ −5.00∗∗∗ −3.85∗∗∗ −2.96∗∗∗

(−5.63) (−5.67) (−4.30) (−5.79) (−5.51) (−4.37) (−3.82)

Shorting Fee 59.68∗∗∗ 52.64∗∗∗

(11.03) (9.65)

Size Quintile
2 −8.86∗∗∗ −7.10∗∗∗

(−14.79) (−12.98)

3 −10.76∗∗∗ −8.17∗∗∗

(−14.33) (−11.38)

4 −13.17∗∗∗ −8.35∗∗∗

(−14.62) (−9.35)

5 −12.62∗∗∗ −8.88∗∗∗

(−9.53) (−6.60)

Var of Returns 63.37∗∗ 24.73∗∗

(1.99) (2.31)

Turnover 36.80∗∗ −4.03
(1.99) (−0.24)

Debt/Total Assets −4.61∗∗∗ −1.36
(−3.36) (−1.16)

Log Book/Market 0.86∗∗∗ 1.22∗∗∗

(2.72) (3.86)

1Option −9.29∗∗∗ −5.80∗∗∗

(−11.82) (−8.27)

1NASDAQ 1.36∗ −0.04
(1.88) (−0.05)

N 1975 1975 1975 1975 1975 1975 1975

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

This table reproduces the estimates of Table 1 and, in addition, reports the coefficients on
the various stock-level characteristics. All columns also include dummies for the quintile that
each stock belongs to based on the t-statistic of satisfying the assumption of Proposition 4
(see the description in the text). For ease of comparison with Table 1 we report (in the first
row) only the coefficient on the dummy variable that compares stocks in the fifth quintile vs.
the first (base) quintile under the heading 1Fail-Satisfy.
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J Details and Additional Results for Section 7

J.1 Measuring ticker discussion on WallstreetBets

Our measure of ticker mentions on WallstreetBets is constructed as follows. We use the
PushshiftAPI to collect all submissions posted on WallstreetBets subreddit from January 1,
2020 through February 7, 2021 (Baumgartner et al. 2020). For each submission, we observe
the title text, the body of the submission, the author of the submission, and the time of the
submission.

We then identify all cases in which these tickers are mentioned in submissions, irrespective
of whether they are prefixed with a dollar sign. To address the possibility of falsely identifying
tickers, we require that, if the ticker is a common word in the written English language, it
must be prefaced by a dollar sign. For example, AT&T’s ticker T is also a common word in
written English, and thus we require that the text “$T” appear in a submission for it to be
considered as mentioned AT&T. We consider a ticker as being mentioned in a submission if
it appears in either the title or the body of the submission. We identify common word-stems
based on the Google Trillion Word Corpus (Michel et al. 2011). In a robustness check, we
account for the downward bias this restriction introduces by scaling common-word tickers
by an in-sample estimated adjustment factor. This adjustment leaves the relative ranking
of ticker mentions largely unchanged. We estimate the adjustment factor by comparing the
frequency of tagged ticker mentions versus un-tagged ticker mentions for the set of tickers
which do not commonly appear in written English.

Revised submissions and comments. Authors of Reddit comments have the ability to
edit their comments even after the comment has been posted. The PushshiftAPI records the
comment text as of a certain day, and does not update to reflect potential revised comments.
The same constraint applies to the content body of submissions. Titles of submissions cannot
be revised and thus do not have this measurement problem.

Missed tickers Tickers that, for whatever reason, are never tagged with a leading dollar
sign will be omitted from our dataset. Similarly, we under-count the occurrences of tickers
that are common words, owing to requiring they appear with a leading “$” We attempt to
correct for this by scaling the observed counts for common word tickers. For AAPL and
GME, which are not common word tickers, the ticker appears with the leading “$” roughly
20% of the time. We can thus simply multiply our observed frequencies by a factor of five
to adjust for the more stringent matching procedure. As can be seen in Figures J.1a and
J.1b, the adjustment does not have a significant impact on the relative popularity of the top
tickers.

In some cases, users may choose to refer to the company by its name, rather than by its
ticker. We do not attempt to identify mentions of companies by name.

J.2 Measuring retail trading

We adopt the methodology of Boehmer et al. (2021) to identify retail trades in the TAQ data.
We briefly summarize the methodology here and refer readers to the paper for details.
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Figure J.1: Popular Tickers on WallstreetBets (January 1, 2020 – February 7, 2021).
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The intuition behind the methodology is the knowledge that retail trades are often
executed by wholesalers or via broker internalization, rather than on the major trading
exchanges. These trades appear in the TAQ consolidated tape data under the exchange code
“D.” These trades are given a small price improvement on the order of tenths of a penny as a
means to induce brokers to route orders to the wholesaler. Similarly, brokers which internalize
retail trades offer a subpenny price improvement in order to comply with Regulation 606T.
Importantly, institutional trades are rarely, if ever, internalized or directed to wholesalers and
their trades are usually in round penny prices, with the notable exception of midpoint trades.

The methodology of Boehmer et al. (2021) uses these institutional details to identify retail
trades in the TAQ consolidated tape data. Trades flagged with exchange code “D” and with
a subpenny amount in the set (0, 0.40) ∪ (0.60, 1.00) are identified as retail trades. Splitting
these trades further, retail trades with subpenny amounts between zero- and forty-hundredths
of a penny are labeled as “sell orders,” whereas subpenny amounts between sixty- and one
hundred-hundredths are considered “buy orders.” The midpoint trades are excluded to avoid
mis-classifying institutional trades executed at midpoints as retail trades.

J.2.1 Challenges

Derivatives The TAQ data only contains trades of equities. Options offer another way to
benefit for investors to benefit from increases in the price of stock. As an added advantage
for retail investors, options offer embedded leverage greater than what might otherwise be
available through their broker. The Boehmer et al. (2021) methodology relies on institutional
details to identify off-exchange retail trades, and thus cannot reliably identify replication
trades by market makers. See Barber et al. (2024) for additional discussion of the limitations
of the aforementioned methodology.

J.3 Betting against the shorts portfolio

As is standard in the literature, we restrict attention to common shares of COMPUSTAT
firms which trade on the NYSE, AMEX, and NASDAQ exchanges. We further exclude
companies for whom no share class has a price exceeding $1. The strategy equally weights
each firm in the top decile, shorts the market index, and reconstitutes 8 trading days following
the disclosure date, which is the first opportunity following the public dissemination of the
short interest data.
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Highly Shorted Stocks Excl. Popular Reddit Stocks Excl. Small Stocks

Panel A: November 2020

rEW 0.164 0.161 0.226
(4.330) (4.249) (5.077)

rVW 0.093 0.092 0.132
(3.208) (3.186) (3.446)

rEWFF3 0.086 0.083 0.157
(3.641) (3.512) (4.373)

rVWFF3 0.044 0.042 0.080
(1.871) (1.819) (2.461)

Panel B: December 2020

rEW 0.057 0.061 0.019
(1.509) (1.606) (0.420)

rVW 0.033 0.036 0.020
(1.128) (1.243) (0.517)

rEWFF3 0.017 0.021 -0.000
(0.727) (0.882) (-0.009)

rVWFF3 0.013 0.015 0.008
(0.546) (0.671) (0.257)

Panel C: January 2021

rEW 0.271 0.233 0.156
(6.835) (5.865) (3.576)

rVW 0.194 0.160 0.182
(6.658) (5.576) (4.762)

rEWFF3 0.205 0.167 0.113
(8.685) (7.059) (3.135)

rVWFF3 0.163 0.128 0.155
(6.895) (5.598) (4.741)

Table J.1: Portfolio returns (November 2020–January 2021). Test of whether the monthly
return to the strategy of betting against the shorts is “abnormal” in November 2020 (Panel
A), December 2020 (Panel B), and January 2021 (Panel C). The table reports the coefficient
and the t-statistic of the month dummy variable that takes the value of one for the month
listed in the title of the panel and zero otherwise from the regression:

rBetting against the shorts = const. + month dummy + β′Ft + εt.

The first two rows of each panel do not control for any factor exposures and refer to equal-
weighted (EW ) and value-weighted (VW ) returns, respectively. The last two rows of each
panel control for Fama-French 3-factor exposures.
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Figure J.2: Monthly returns (1973–2021). Histograms show monthly returns to a trading strategy
long stocks in the top decile of short interest and short the market index. The top-left plot
depicts equal-weighted returns, excluding the six most-popular stocks discussed on Reddit (AMC,
BBBY, GME, SPCE, TLRY, and TSLA). The top-right plot depicts equal-weighted returns, further
excluding small market capitalization stocks. The bottom-left plot depicts value-weighted returns.
The bottom-right plot depicts value-weighted returns, excluding popular stocks discussed on Reddit.
The arrows indicate the portfolio returns in the months of November and December 2020 and
January 2021.
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1, 2020 – February 7, 2021). The vertical axis is on a logarithmic scale.

10

30

100

300

1000

3000
H

o
u

rl
y
 S

u
b

m
is

s
io

n
s
 (

lo
g

 s
c
a

le
)

1

3

10

30

100

300

H
o

u
rl
y
 T

ra
d

in
g

 V
o

lu
m

e
 (

$
 m

ln
, 

lo
g

 s
c
a

le
)

Jan 8, 2021 Jan 15, 2021 Jan 22, 2021 Jan 29, 2021
Date

Retail Investor Trading Volume

Mentions of GME on WSB

Figure J.4: Retail trading volume in GME (January 7 – January 29, 2021). Hourly trading volume
in GME, measured using the methodology of Boehmer et al. (2021), plotted together with hourly
mentions of the GME ticker on the WallStreetBets subreddit. Both vertical axes are on logarithmic
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Figure J.5: Aggregate short interest (July 2020–June 2021). The figure plots value-weighted short
interest for highly shorted stocks as of October 31, 2020. Highly shorted stocks are defined as the
stocks in the top decile of the Russell 3000, ranked by short interest. The identities of these stocks
is fixed and their short interest is plotted over the preceding four and subsequent eight months.
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