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1 Introduction

We study an economy in which expectations about future discount rates can become self-fulfilling

because asset valuations redistribute wealth between different cohorts. For such redistribution to

take place, the endowments of arriving and existing cohorts of investors must react differently to

discount rates, and in addition only the existing agents be marginal in financial markets. The

self-fulfilling nature of discount rate expectations means that the economy can address several well

documented empirical asset pricing facts (excessive volatility, return predictability, low interest

rate level and volatility), while all real quantities (aggregate consumption and dividend growth)

are locally deterministic processes.

The possibility of self-fulfilling expectations (also referred to as “indeterminacy”) in overlapping

generations (OLG) endowment economies, such as the one we study, has long been recognized.

The indeterminacy in these models, however, stems from the existence of a (rational) bubble. We

contribute to this literature by showing that indeterminacy can arise in the absence of bubbles,

and regardless of the conditions the existence of bubbles requires.1 The relation between a model

with bubbles and ours is that both models assume multiple sources of wealth to allow discount rate

movements to have redistributive effects. We show, however, that there is no need for one of these

sources of wealth to be a bubble.

The ability to dispense with bubbles imparts an additional element of discipline and testability.

Without bubbles, conventional present value relations (and accordingly Campbell-Shiller decom-

positions) continue to hold. Thus, whereas the shocks driving the volatility of asset prices may

be unobservable, the relation between discount rates, dividend growth, and prices is the same as

in any other asset-pricing model. The model can therefore be confronted with data, while being

agnostic about the origin of the shocks.

We next provide a more detailed outline of the model and summarize its main implications.

The framework is a continuous-time OLG economy. Agents arrive (and die) continuously. Upon

birth, they are endowed with “human capital,” which we model as an income stream that they

receive throughout their lives. In addition, some agents have the ability to create a new firm, which

partially displaces the output of some existing firms. In creating the new firms, they face a dilemma.

1Abel et al. (1989) shows (in the production version of such economies) that for bubble to exist the transfers
from the household sector to the corporate sector for the purposes of investment must exceed the transfers from the
corporate to the household sector in the form of profits (or, more appropriately, return on capital). In the data,
however, the latter transfers have consistently been larger.
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They could choose to start a “safe” firm, which is bound to produce positive dividends, or take a

gamble and start a “risky” firm. A risky firm is a lottery. If successful, it produces higher dividends

than the safe firm in perpetuity. If unsuccessful, it fails at inception, and the entrepreneur has to

rely on her human capital to finance her consumption. Importantly, there are no “real” shocks to

the economy, i.e., no exogenous shocks to technologies or preferences.

Restricting attention to deterministic equilibria, we show that in this rather minimal model

the price of a firm can be indeterminate. Specifically, when new-firm creation responds sufficiently

to discount rates, there are multiple (indeed, a continuum of) equilibrium paths that can take the

economy to its steady state. The logic centers on the interaction between discount-rate anticipations

and wealth redistribution. Suppose, for instance, that all investors anticipate low discount rates

in the future. These low discount rates benefit arriving cohorts disproportionately, by raising the

attractiveness of the risky-firm choice and thus spurring the creation of new firms, which displace a

larger fraction of the dividend of the old firms. Accordingly, the wealth share of the owners of the

older firms (i.e, the older cohorts) declines and so does their consumption growth. The reduction in

the consumption growth of older cohorts (who are marginal in financial markets) leads to a lower

equilibrium discount rate, confirming the agents’ anticipation.

To summarize, there are two key elements in the above argument: a) discount rates redistribute

wealth between two groups of agents; and b) discount rates are determined by the consumption

growth of one group (existing cohorts), but not the other (arriving cohort).

To better explain this point, we revisit the indeterminacy that obtains in models with bubbles

and show that a similar redistribution mechanism is responsible for this indeterminacy. We argue

that the existence of a bubble is not necessary for indeterminacy in the sense that a bubble is useful

only insofar as it provides a second asset that causes redistribution between the different cohorts.

The fact that this second asset is fundamentally worthless is actually immaterial.

Because of the multiplicity of deterministic equilibria, it is fairly straightforward to construct

stochastic, “sunspot” equilibria. In such equilibria the source of randomness pertains to which

equilibrium agents coordinate on. In all these equilibria asset prices can have essentially arbitrary

volatility, while the consumption processes for all investors are “locally deterministic” (i.e., exhibit

no instantaneous volatility). Even though the change in an agent’s consumption over the next

increment of time is known, the “long run” change in the agent’s consumption is stochastic. Hence,

as long as investors have recursive preferences, the extrinsic uncertainty — rooted in the random
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shifts of expectations — carries a risk premium.

While the primary goal of the paper is to illustrate the qualitative feedback effects between

redistribution and discount rate expectations that arise in models with heterogeneous agents, we

also provide a quantitative illustration of the model. The goal of this exercise is to show that,

while the shocks are non-fundamental and not directly observed, the rest of the model structure

provides enough discipline that the model can be confronted with its empirical predictions, just

like any other asset pricing model. We show that the model produces realistic risk premiums,

return predictability patterns, low interest rate levels and volatility, even though consumption and

dividends are locally deterministic, aggregate consumption growth is constant, and investors have

an intertemporal elasticity of substitution equal to one.

We conclude this introduction with two remarks on some broader implications of our model.

First, indeterminacy and equilibrium multiplicity are helpful devices to illustrate in the starkest

possible way the interplay between the wealth distribution and discount rate changes, which is a

feature of heterogeneous-agent models (and are absent in representative agent models). While we

use extrinsic shocks to drive fluctuations in asset prices, and illustrate the mechanisms at play,

the feedback effects that we identify are present whether the uncertainty in the model is driven by

fundamental or extrinsic shocks.

Second, while in this paper we don’t consider welfare and policy implications, we would like to

remark that the indeterminacy identified in our model is distinct from the type of indeterminacy

that routinely arises in macroeconomic models with endogenous interest rate rules. Given the

rapidly growing macroeconomics literature on the effects of macroeconomic policy in heterogeneous-

agent setups, we believe that the indeterminacies that arise in our model provide a new channel by

which stabilization policy could have valuable effects.

1.1 Relation to the literature

The paper relates to various strands of the literature. One strand generates multiple equilibria

and indeterminacy, through a variety of mechanisms. Of these, the main ones are a) bubbles (or

money) in OLG economies, b) increasing returns to scale and production externalities, and c)

portfolio constraints.2

2The survey Benhabib and Farmer (1999) lists the different mechanisms that lead to indeterminacies.
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Our paper is closest to a).3 As mentioned earlier, we dispense with the requirement that a

bubble exist in the economy to obtain indeterminacy, thus sidestepping the empirical challenges

associated with the requirements for the existence of a bubble.4,5 Our mechanism does not involve

increasing returns to scale or production externalities. While our model features creative destruc-

tion, this creative destruction is useful only in causing redistribution; it does not affect aggregate

output or aggregate productivity, which are both exogenous. Specifically, if we linked the different

generations altruistically — thus restoring a representative agent economy — the indeterminacy

would disappear, unlike the indeterminacies that arise in endogenous growth models. Our mecha-

nism also does not include portfolio constraints for any agent that has already joined the market.

Since the focus of the paper is on reconciling volatile asset prices with non-volatile macroeco-

nomic aggregates (consumption, dividends, etc.), the paper naturally belongs to the literature on

macro-asset pricing. The leading examples in this literature are the representative agent frameworks

of Campbell and Cochrane (1999), Bansal and Yaron (2004), and Barro (2006), which abstract from

redistribution. Just as these models, our paper strives to qualitatively and quantitatively address

not just the equity premium puzzle, but an entire host of other asset pricing facts, such as the

low and non-volatile interest rate, the predictability patterns of dividend, consumption and excess

returns, etc. Given the usage of recursive preferences, we are closer to Bansal and Yaron (2004),

but with some important differences: a) in our model aggregate consumption growth is constant,

b) we do not require an intertemporal elasticity of substitution above one — our results are derived

for an IES equal to one, and would continue to hold for an IES less than one, and c) we do not

require separate volatility shocks to obtain countercyclical risk premiums.

Because of our usage of a perpetual youth framework, we relate to papers using overlapping

generations to explain asset pricing fluctuations driven by fundamental shocks.6 We differ from

3Tirole (1985), Blanchard and Watson (1982), and Santos and Woodford (1997) are some seminal contributions
on bubbles. See Brunnermeier (2008) for a recent survey. Cass and Shell (1983) is the seminal contribution on
indeterminacy.

4Abel et al. (1989) tests for dynamic inefficiency, which is a condition for the existence of bubbles, and find that
the evidence points to a dynamically efficient economy, which precludes the possibility of bubbles. Giglio et al. (2016)
examine the long term discounting of real estate in England and Hong Kong and find no evidence of a rational bubble.

5We should note here that there are several different variants of what the literature labels as “bubbles.” For
instance, Harrison and Kreps (1978) and Scheinkman and Xiong (2001) discuss bubbles in dynamic environments
with disagreement and short sale constraints. These bubbles reflect resale premiums and are determinate. These
bubbles differ from the “rational” bubbles that we discuss later in the paper, in that rational bubbles require that an
investor with rational beliefs earn the required rate of return from his or her investment in the bubble.

6Indicative examples include Constantinides et al. (2002), Abel (2003), Gomes and Michaelides (2005), Gârleanu
and Panageas (2015), Gârleanu and Panageas (2019), Gomez (2017), Maurer (2017), and Schneider (2017). See
Panageas (2019) for a survey.

4



these papers by focusing on the feedback between redistribution and interest rates and showing that

it can lead to self-fulfilling expectations. Farmer (2018) considers the asset pricing implications of

indeterminacy in a model with money. Başak (2000), Başak et al. (2008), DeMarzo et al. (2008),

Gârleanu et al. (2015), Barlevy and Veronesi (2000), Miao and Wang (2018), and Zentefis (2019)

are other examples of dynamic asset pricing frameworks that can lead to indeterminacies, albeit

for different reasons than the ones we highlight in this paper.

2 Model

2.1 Consumers

Time is continuous. Each agent faces a constant hazard rate of death λ > 0 throughout her life, so

that a fraction λ of the population perishes at each instant. A new cohort of mass λ is born per

unit of time, so that the total population remains at λ
∫ t
−∞ e

−λ(t−s)ds = 1.

Consumers maximize

Es

∫ ∞
s

e−ρ(t−s) log (ct,s) dt, (1)

where s is the time of their birth and t is calendar time. The assumption of logarithmic preferences,

which implies an inter-temporal elasticity of substitution (IES) equal to one, facilitates the exposi-

tion, but is inessential. In Section 5 we consider recursive preferences with IES equal to one, but a

different risk aversion. In Appendix C we extend the baseline model to allow for an IES different

from one. Agents have no bequest (or gift) motives for simplicity.

2.2 Endowments

The total endowment of the economy is denoted by Yt and evolves exogenously according to

Ẏt
Yt
≡ g

with g > 0. To sharpen our results, we abstract from aggregate uncertainty about the endowment.

All agents have the same preferences, but their initial endowments differ. Specifically, at birth

agents can be of two types, “human capitalists” or “entrepreneurs,” depending on the nature of

their endowment. The time-t fraction of human capitalists in every arriving cohort is 1− εt, while
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the fraction of entrepreneurs is εt. These fractions are not constant, but cohort-dependent and

endogenous. Before analyzing the determination of εt, we describe the endowments of the two

types of agents.

2.3 Human capital

Letting lt,s ≡ λ (1− εs) e−λ(t−s) denote the measure of human capitalists that were born at time

s and have survived to time t, the per-capita endowment wt,s of a human capitalist born at time

s ≤ t is given by

wt,s ≡
(1− α)Yt

(
δl + g

)
e−(δl+g)(t−s)

lt,s
, (2)

where α ∈ (0, 1) and δl > −g are constants. The constant δl captures the obsolescence rate of a

given cohort’s human capital over time.

Aggregating over all cohorts in the economy implies that the aggregate human capital proceeds

are a constant fraction (1− α) of output:

∫ t

−∞
wt,slt,sds = Yt (1− α)

(
δl + g

)∫ t

−∞
e−(δl+g)(t−s)ds = (1− α)Yt. (3)

2.4 Risky entrepreneurship

At the time of their birth s, a fraction ε̄ < 1 of arriving agents have the ability to become en-

trepreneurs. These potential entrepreneurs create a firm and introduce it into the stock market at

time s. They use the proceeds from the sale of this firm to finance their life-time consumption. For

the purposes of this paper, a firm is just a dividend stream, akin to a “Lucas tree.”

We index potential entrepreneurs by i ∈ [0, ε̄]. They are faced with two choices at birth. The

“safe” choice is to create a new company that produces dividends

D
(i)
t,s = ψαYte

−
∫ t
s (δdu+g)du, (4)

for times t ≥ s, where ψ > 0 and δdt > 0 reflects an obsolescence process that we specify shortly. The

alternative, “risky,” choice is to introduce a company that is successful with probability π ∈ (0, 1).
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Specifically, it produces dividends

D
(i)
t,s =

 ξiαYte
−

∫ t
s (δdu+g)du with probability π

0 with probability 1− π
(5)

at all times t ≥ s. Here, ξi is entrepreneur specific and known to the entrepreneur before she makes

her choice. In case of success, the value ξi is common knowledge in the economy. Without loss of

generality, we assume that ξ : [0, ε̄] → R+ is a decreasing function, i.e., entrepreneurs with a low

index i can create a more profitable firm than the ones with a high index i.

If the firm ends up being worthless, the entrepreneur becomes a human capitalist for the re-

mainder of her life, so as to finance a positive consumption stream. One possible interpretation

is that the “human capitalists” are scientists who choose to either work for the existing firms, or

create their own companies. In the latter case, in the event of failure they can rejoin the workforce.

The choice between the safe and the risky option happens once, at birth, and the uncertainty

associated with the risky choice is resolved immediately and publicly before the firm’s introduction

to the market. Since agents are members of a continuum, they take all prices as given when making

the choice between the safe and the risky option.

2.5 Aggregate dividends and displacement

Throughout we let Dt,s denote the total time-t dividends accruing to firms born at time s. We now

derive an expression for the total dividends accruing to newly born firms (Dt,t). If a measure ζt < ε̄

of entrepreneurs chooses the risky choice, then aggregating gives

Dt,t =

∫ ε̄

0
D

(i)
t,t di = αYt

(
π

∫ ζt

0
ξidi+ (ε̄− ζt)ψ

)
. (6)

We make the following implicit assumption on model primitives.

Assumption 1 It holds that

δdt + g = π

∫ ζt

0
ξidi+ (ε̄− ζt)ψ. (7)

Assumption 1 states that the proportion of aggregate dividends accounted for by new firms

equals the depreciation rate of the dividends of existing firms plus the aggregate growth rate. This
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assumption captures — in a stylized way — the popular idea that entry of new firms is a source of

disruption to existing firms (“creative destruction”). This rivalry between entering and incumbent

firms is a key feature of several modeling frameworks. Indicatively, we refer to the seminal papers

Romer (1990) and Aghion and Howitt (1992).7 Here we go farther and make the starker assumption

that entry does not affect aggregate growth, in order to isolate the redistribution mechanism, on

which the paper focuses. In Appendix D.1 we show that modifying the model to allow entry that

promotes aggregate growth does not affect the results of the paper.

One way to highlight the redistributive aspect embedded in Assumption 1 is to combine equation

(7) with equations (4) and (5) to infer that the total time-t dividends produced by firms born at

time s are given by

Dt,s = α
(
δds + g

)
Yte
−

∫ t
s (δdu+g)du. (8)

Consequently, defining aggregate dividends as DA
t ≡

∫ t
−∞Dt,sds, differentiating DA

t with respect

to time t yields

ḊA
t

DA
t

=

∫ t
−∞ Ḋt,sds

DA
t︸ ︷︷ ︸

=−δdt

+
Dt,t

DA
t︸︷︷︸

=δdt+g

. (9)

Equation (9) decomposes the change in aggregate dividends into two components. The first

component is the proportional decline in the dividends of existing firms
(
−δdt

)
, while the second

component captures the proportion of aggregate dividend growth due to the newly arriving firms(
δdt + g

)
. Hence, δdt determines the redistribution of dividend income between existing and arriving

firms.

A further implication of Assumption 1 is that aggregate dividends constitute a fraction α of

output (DA
t = αYt) for any path of δdt ,8 as is required to account for the entire output Y , which

7Indeed, a mathematically equivalent formulation of our model would be to assume that the dividends of individual
firms don’t depreciate with certainty, but instead that every existing firm faces an instantaneous hazard rate δdt of
being displaced by an entrant.

8Aggregating equation (8) across all firms gives∫ t

−∞
Dt,sds = αYt

∫ t

−∞

(
δds + g

)
e−

∫ t
s (δdn+g)dnds = αYt. (10)

A technical requirement is that
∫ t
−∞(δds + g)ds = ∞ a.s. Our proposed δs, a “regular” diffusion on (−g, δ̄) for some

δ̄ > −g, satisfies this condition.
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accrues as either wages or dividends.

2.6 Markets

Markets are dynamically complete. Investors can trade in instantaneously maturing riskless bonds

in zero net supply, which pay an interest rate rt. Consumers can also trade claims on all existing

firms (normalized to unit supply). Finally, investors can access a market for annuities through

competitive insurance companies as in Blanchard (1985). We refer to Blanchard (1985) for details

of this annuity market. Briefly, the presence of annuities allows agents to receive an income stream

of λWt,s per unit of time, where Wt,s is their financial wealth. In exchange, the insurance company

collects the agent’s financial wealth when she dies. Entering such a contract is optimal for all

agents, given the absence of bequest motives. The budget constraint of a human capitalist is

dWt,s = (rt + λ)Wt,sdt+ wt,sdt+

∫ t

−∞
θt,s (dPt,s +Dt,sdt− rtdt) ds, (11)

where Wt,s is a consumer’s wealth, Pt,s is the value of the representative firm of vintage s, and

θt,s is the number of shares of each company. For a worker, Wt,t = 0. An entrepreneur’s dynamic

budget constraint is identical, except that the term wt,s is replaced by zero and the initial wealth

Wt,t is given by the value of the firm that the entrepreneur creates.

2.7 Equilibrium

The equilibrium definition is standard. We look for consumption processes ct,s, asset allocations θt,s,

asset prices Pt,s, a process of entrepreneurial risk choice ζt ∈ [0, ε̄], and an interest rate rt such that

a) consumers maximize (1) subject to (11); b) newly-born entrepreneurs optimally choose whether

to take the risky or the riskless choice; c) the goods market clears, i.e., λ
∫ t
−∞ e

−λ(t−s)ct,sds = Yt;

and d) assets markets clear, i.e.,
∫ t
−∞ λe

−λ(t−s)θt,sds = 1 and
∫ t
−∞ λe

−λ(t−s)(Wt,s− θt,sPt,s)ds = 0.

3 Baseline Model: Solution and Analysis

3.1 Deterministic equilibria

Our model features no fundamental shocks. In this section we derive a deterministic equilibrium,

which helps us highlight the presence of multiple equilibria. We also use this simple model to
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introduce stochastic equilibria capturing shifts in the manner in which investors coordinate expec-

tations.

3.1.1. Definitions and ancillary results

We start by introducing some notation. First, the effective discount rate:

β ≡ λ+ ρ. (12)

Second, we use qdt,s to denote the “price-dividend ratio,” that is, the ratio of the present value of

the dividend stream Du,s to the current level Dt,s:

qdt,s ≡
Et
∫∞
t e−

∫ u
t rvdvDu,sdu

Dt,s
. (13)

We note that qdt,s is independent of s, since
Du,s
Dt,s

is not a function of s. Accordingly, we write qdt

rather than qdt,s. In a similar fashion we define the ratio of the present value of human capital to

current wages as

qlt,s ≡
Et
∫∞
t e−

∫ u
t (rv+λ)dvwu,sdu

wt,s
. (14)

Similar to qdt , qlt,s does not depend on s, and we will write qlt.

At this stage, the expectation operator in equations (13) and (14) appears superfluous (since

we are constructing a deterministic equilibrium), but it will become useful later.

To prepare for the analysis of the model, and economize on notation, we note the following

relation between qdt and qlt.

Lemma 1 In any bubble-free equilibrium

(1− α) qlt =
1

β
− αqdt . (15)

Equation (15) is intuitive. To derive it, observe that the sum of present value of all dividend

income accruing to existing firms
(
qdt αYt

)
plus the present value of all earnings accruing to exist-

ing agents
(
qlt (1− α)Yt

)
multiplied by the consumption-to-wealth ratio β should equal aggregate
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consumption Ct:

β
(
qdt αYt + qlt(1− α)Yt

)
= Ct. (16)

Recognizing that in equilibrium Ct = Yt leads to (15).

The linear relation between qdt and qlt captured by (15) implies that we need only characterize

the equilibrium behavior of qdt ; the behavior of qlt is determined by that of qdt . In light of this

observation, from now on we will use the simpler notation qt interchangeably with qdt to refer to

the price-dividend ratio.

3.1.2. Solution

In this section we use the Euler equation along with goods market clearing to derive an expression

for the equilibrium interest rate and a differential equation for the equilibrium price-dividend ratio

qt. The main goal of the section is to show that the differential equation characterizing the dynamics

of qt has a stable steady state and multiple transition paths that lead to this steady state.

The first step of the analysis is to note that time differentiation of (13) implies that qt satisfies

the familiar asset pricing equation

q̇t
qt
− δdt +

1

qt
= rt, (17)

subject to a standard transversality condition. Equation (17) is an indifference relation between

stocks and bonds that needs to hold when risk premiums are absent. It states that the total return

on a stock, comprised of the expected capital gain q̇t
qt
− δdt plus the dividend yield 1

qt
, should equal

the interest rate rt.

The second step towards characterizing the dynamics of qt is to determine the equilibrium

interest rate rt by using the Euler equation and goods market clearing. Letting ct,s denote the

time-t consumption of a consumer born at time s, the Euler equation (in the presence of annuities)

implies

ċt,s
ct,s

= − (ρ− rt) . (18)
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Using the definition of aggregate consumption Ct = λ
∫ t
−∞ e

−λ(t−s)ct,sds together with (18) implies

·
Ct = −λCt + λ

∫ t

−∞
e−λ(t−s)ċt,sds+ λct,t

= − (λ+ ρ− rt)Ct + λct,t. (19)

Market clearing implies Ct = Yt and accordingly
·
Ct = gCt. Therefore (19) leads to

rt = ρ+ g + λ− λct,t
Ct
. (20)

Equation (20) captures the main departure of our model from a typical representative-agent

model. In a representative-agent model with logarithmic preferences, the Euler equation implies

that the interest rate is given by ρ+ g, the sum of the discount rate ρ and the consumption growth

g of the “representative agent,” whose consumption coincides with aggregate consumption. In our

model, the Euler equation (18) applies at the level of an individual, but her consumption growth

differs from aggregate consumption growth. Specifically, the consumption growth of a fixed cohort

member is given by the aggregate consumption growth rate (g) plus the consumption share no

longer consumed by perishing agents (λ) minus the consumption share accruing to the incoming

cohort (λ
ct,t
Ct

). This explains the presence of the term λ− λ ct,tCt on the right hand side of equation

(20).

To solve for the interest rate, we need an expression for λ
ct,t
Ct

. Imposing the intertemporal

budget constraint at the time of a consumer’s birth, we have the following result.

Lemma 2 The newly-born agents’ consumption is given by

ct,t
Ct

=
β

λ

(
(1− α) (δl + g)qlt + α(δdt + g)qt

)
. (21)

Equation (21) is intuitive. It states that the per-capita consumption of newly-born agents equals

the consumption-to-wealth ratio for an investor with unit elasticity of substitution (β) multiplied by

the per-capita value of total (thus, non-traded and traded) wealth, which is given by the expression

inside the outer parentheses.
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Combining (20) with (21) and using (15) gives an expression for the equilibrium interest rate:

rt = β − δl − βα(δdt − δl)qt. (22)

Letting

ηt ≡ δdt − δl, (23)

combining (17) with (22), and re-arranging leads to the differential equation

q̇t = (β + ηt) qt − βαηtq2
t − 1. (24)

Equation (24) describes the dynamics of qt up to the determination of ηt. The value of ηt is

endogenous and, by Assumption 1, depends on the fraction ζt of newly arriving entrepreneurs who

choose the risky over the riskless option. The next lemma provides a relation between ηt and qt.

Lemma 3 The measure ζt of agents choosing the risky options is a (weakly) decreasing function

of qt
qlt
. Therefore, ηt = η(qt) with η′(qt) ≤ 0.

To understand Lemma 3, note that an entrepreneur is risk averse and is concerned more with

the possibility that the risky project may fail (the downside) than with the prospect of its success

(the upside). In the case of failure, the entrepreneur still collects the proceeds of her human capital.

Therefore, a relatively high value of human capital qlt (which is associated with a low value of qt by

Lemma 1) makes the risky choice comparatively more attractive.

If we think of our “human capitalists” as scientists, then Lemma 3 implies that a higher value

of the present value of wages for scientists leads to more innovation and hence displacement of older

firms because of the increased attractiveness of the fall back option to become a scientist.

Remark 1 In an extension to the model that we present in the appendix (Section D.2), we argue

that it is inessential for the model that all workers be scientists who stand to benefit from creative

destruction. Indeed, all our conclusions go through if the workers are heterogeneous with some

“low-skilled” workers suffering from displacement just like existing firms. We also show that it is

inessential for all firms to suffer from displacement.
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Figure 1: An illustration of Proposition 1.

3.1.3. Stable steady state and multiplicity of transition paths

Lemma 3 shows the existence of a decreasing function η : R→ R such that ηt = η (qt). We proceed

to write equation (24) compactly as

q̇t = A (qt)

≡ (β + η (qt)) qt − βαη (qt) q
2
t − 1. (25)

Equation (25) is the key equation of the paper, since it characterizes the dynamic behavior of

the price-to-dividend ratio. Inspection of (25) shows that the dynamics of qt depend crucially on the

shape of the function η. The assumptions on the distribution of initial productivity ξi determine

how fast η declines. (The proof to Proposition 1 in the appendix provides a mapping between any

given downward sloping η and a distribution of ξi and associated parameter ψ.) The following

proposition shows that η can be chosen so that the differential equation q̇t = A (qt) has a stable

steady state.

Proposition 1 For any three real numbers 0 < q1 < q2 < q3 <
1
αβ , there exist parameters under

which qi, i ∈ {1, 2, 3}, are roots of A(q) with A′ (q1) > 0, A′ (q2) < 0, and A′ (q3) > 0.

Figure 1 illustrates Proposition 1. The figure shows that that q̇t is positive between q1 and
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q2 and negative between q2 and q3. An immediate implication is that the dynamical system (25)

has a stable steady state. Any initial value qt0 ∈ (q1, q3) is associated with a different equilibrium

transition path to the steady state q2. Interestingly, all of these paths constitute different, perfect-

foresight equilibria and the economic structure cannot rule out any of them.

The presence of multiple equilibrium paths (“indeterminacy”) is an uncommon property for a

neoclassical model, especially one that features neither bubbles, nor increasing returns to scale in

production. We next explain the economic intuition behind this indeterminacy. In the next section

we discuss the relation between our result and the indeterminacy obtained in similar OLG models

featuring bubbles.

The source of indeterminacy is investors’ self-fulfilling expectations about future discount rates

and the effects that these expectations have on redistribution between existing and arriving cohorts.

To give an example, suppose that at time t investors expect to approach the steady state q2 through

an increasing path of discount rates, i.e., that discount rates on the transition path will be lower

than at the steady state. This anticipation of low interest rates on the transition path raises

the current value of human capital and stimulates the creation of new firms, which displace the

dividends of old companies. The cohort of agents born at time t unambiguously benefits, since

the value of their human capital increases and their cohort benefits from increased firm creation.

Since aggregate consumption is given at time t and the consumption-to-wealth ratio is fixed, the

increased wealth of the younger cohorts implies that the arriving cohort appropriates a larger share

of aggregate consumption (
ct,t
Ct

), resulting in a lower consumption growth rate for older cohorts.

Finally, only older cohorts are marginal in asset markets, and therefore their lower consumption

growth rate is reflected in lower interest rates (equation (20)), confirming the expectations of low

interest rates.

One ingredient of the above argument is that the entry rate of new firms must respond suffi-

ciently to variation in the valuation ratio — more precisely, the function η needs to be decreasing

sufficiently strongly with q. The proof of the proposition in the appendix provides the exact con-

dition.

Remark 2 The requirement that ηt be negatively related to qt is special to the simplifying assump-

tion that the IES is equal to one. As we discuss in Appendix C, the relation between ηt and qt can

be positive if the IES is below one, while the equilibrium remains indeterminate. When the IES

is below one, the wealth-to-consumption ratio is itself time-varying, and hence the value of human
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and firm capital don’t have to offset each other, as they do in the case of unitary IES (Lemma 1).

In particular, depending on parameters, the ratio of firm-to-human capital (qdt /q
l
t) may decline —

which, by Lemma 3, implies that ηt increases — while both qdt and qlt increase. Proposition 6 in

Appendix C provides a formal result.

3.2 Stochastic “sunspot” equilibria

An immediate implication of the multiplicity identified in the baseline model is the potential for

so-called “sunspot” equilibria, i.e., stochastic equilibria where the source of uncertainty is not about

fundamentals (preferences, endowments, etc.), but rather reflects random fluctuations in agents’

perceptions about the equilibrium path that the economy will follow.

To construct such equilibria, we introduce a standard brownian motion Bt. This Brownian

motion reflects random “noise” that is extrinsic to the economy; however, everyone understands

(and knows that everyone else also understands) that this noise acts as a coordination device for

investor expectations (e.g., speeches, articles, a perception of market “sentiment,”etc.).

The next proposition states the existence of equilibria whereby an understanding among in-

vestors that the noise Bt is useful in coordinating expectations ends up becoming self-fulfilling, in

the sense that it affects both asset-price dynamics and equilibrium consumption allocations.

Proposition 2 For q1 and q3 as in Proposition 1, take an interval [qmin, qmax] ⊂ (q1, q3) with

A
(
qmin

)
> 0 and A (qmax) < 0. Further, choose a bounded function σ : (qmin, qmax)→ R+ with the

properties σ(x) > 0 ∀x and

lim
q→qmax

(
σ2 (q)

qmax − q

)
< 2 |A (qmax)| , lim

q→qmin

(
σ2 (q)

q − qmin

)
< 2A

(
qmin

)
. (26)

Then there exists an equilibrium whereby the equilibrium stochastic process for qt is given by the

diffusion

dqt = A (qt) dt+ σ (qt) dBt. (27)

In such an equilibrium qt possesses a stationary distribution, equation (15) continues to hold, and

rt continues to satisfy (22).

Proposition 2 ensures the existence of sunspot equilibria, i.e., equilibria where the process qt
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is stochastic and driven by the noise process Bt. Inspection of equation (27) shows that these

processes have the same drift A(qt) as in the deterministic case, and in addition feature a volatility

σ(qt), which is essentially arbitrary (up to satisfying the technical condition (26), which ensures

stationarity).

To see intuitively why such equilibria exist, we start by noting that, even if an equilibrium is

stochastic (in the sense that qt is stochastic), the consumption of existing investors — who are

marginal for pricing assets — must be locally deterministic.9 Accordingly, equations (18) and (20)

continue to hold, as do Lemmas 1, 2, and 3. The main equation that needs to be modified in

the presence of noise is the asset-pricing equation (17), which now includes a diffusion term. As

the consumption of existing agents has no quadratic variation, there is no risk premium in this

economy. Consequently, equation (17) continues to describe the drift of dqt. (As we explain later,

this implication no longer holds when investors have recursive preferences.)

4 Relation to Rational Bubbles

A novel aspect of the indeterminacy in the present model is that it does not require a “bubble” in

the economy. Indeed, the steady state that we consider can feature an interest rate that is higher

than the growth rate of output, a situation in which no rational bubble can exist.

In this section, we discuss the relation between our mechanism for indeterminacy and the one

based on bubbles. In the context of our model we identified three elements that are responsible

for indeterminacy: a) the existence of multiple assets (firm value and human capital), which react

differently to changes in discount rates; b) the fact that existing and arriving cohorts of agents are

differentially endowed with these assets; and c) the fact that only existing agents play a role in

price formation (arriving agents can only participate in markets after their birth). In this section,

we argue that these same features are responsible for indeterminacy in models with bubbles, except

that the role played by the multiple assets in our model is played by the presence of “fundamental

values” and “bubbles” as two distinct stores of value in bubble-based models.

We proceed now to explain these statements in more detail. To that purpose, we modify

our baseline model by (i) eliminating features that are necessary only to obtain indeterminacy

in the absence of bubbles and (ii) dropping the no-bubble (transversality) assumption, so that

9This property follows from the fact that aggregate consumption is deterministic, while newly born agents arrive
at a finite rate.
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equation (15) need no longer hold.

Specifically, entrepreneurs’ entry rate is exogenous, and further we assume in this section that

δd = δl =: δ. It follows, using definitions (13) and (14), that qdt,s = qlt,s =: qt. As in Section 3,

the Euler equation (18) and the goods-market clearing equation (19) imply that the interest rate

continues to be given by

rt = ρ+ g + λ− λct,t
Ct
. (28)

Assuming, further, that the value of a newly arriving firm equals the present value of its div-

idends, the assumption δl = δd (and accordingly qdt = qlt =: qt) together with Lemma 2 leads to

ct,t
Ct

=
β

λ
(g + δ)qt. (29)

Equation (17) remains unchanged, and substituting (29) into (28) and then into (17) gives the

Riccati equation

q̇t = (β + g + δ) qt − β(g + δ)q2
t − 1. (30)

It is noteworthy that equation (30) is not just a special case of equation (25) with δl = δd.

The difference is that, in deriving equation (25), we imposed Lemma 1, which assumes the absence

of bubbles, whereas in deriving equation (30) we did not. (If we were to exclude equilibria with

rational bubbles on any asset, then Lemma 1 would hold, and since δl = δd, the only solution for

the price-dividend ratio would be qt = qlt = qdt = 1
β for all t.)

Since the right-hand side of (30) is quadratic in qt, there are two values of qt such that q̇t = 0

(candidate steady states). They are given by q∗ = 1
g+δ and q∗∗ = 1

β . In these steady states,

equations (28) and (29) imply that the interest rate would be r∗ = g and r∗∗ = β − δ, respectively.

The nature of equilibria in this economy rests on whether β is larger than g + δ or not. As

Proposition 3 below shows, if β > g + δ then the economy cannot feature bubbles, and the equi-

librium value of qt is unique. By contrast, if β < g + δ, then there are two steady states, one of

which is stable. To facilitate the statement of the proposition, we let Pt denote the aggregate value
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of financial wealth and bt the value of the bubble:

Pt ≡
(

1

β
− (1− α) qt

)
Yt (31)

bt ≡ Pt − αqtYt =

(
1

β
− qt

)
Yt, (32)

where we used the fact that, due to the logarithmic preferences, the aggregate wealth in the economy

equals Ct
β = Yt

β .

Proposition 3 (i) If β > g+ δ, then the unique equilibrium features qt = q∗∗ = 1
β and bt = 0. (ii)

If β < g+ δ, then both q∗ and q∗∗ correspond to steady-state equilibria. Furthermore, to any initial

value q0 ∈ [q∗, q∗∗] there corresponds an equilibrium, along whose path it holds that ḃt = rtbt for all

t > 0. If q0 > q∗, then limt→∞ qt = q∗∗ and limt→∞
bt
Yt

= 0.

In case (i) the equilibrium features the property r > g in steady state.10 By a well known

argument (see, for instance, Tirole (1985)) there cannot be any bubbles in this case, since there

would be a contradiction: Any bubble has to grow at the rate rt and would eventually become larger

than aggregate financial wealth Pt (which grows at the same rate as output, namely g, by equation

(31)). Equation (32) would then imply a negative qt, contradicting the fact that qt = 1
β > 0.

In case (ii), r ≤ g in either steady state, which allows for indeterminate equilibria. The different

equilibrium paths associated with different values q0 feature different initial values of the bubble,

b0. The bubble grows at the interest rate rt, and hence investors earn the required rate of return.

In all equilibria that emanate from q0 ∈ (q∗, q∗∗] the bubble grows more slowly than aggregate

consumption Ct (and aggregate market capitalization Pt), since rt < g. An exception is the

equilibrium that starts with q0 = q∗, in which rt = g and the bubble remains a constant fraction

of the aggregate economy.

The presence of bubbles introduces multiple equilibria in a way that is similar to the mechanism

of the baseline, bubble-less model. There, the total wealth in the economy — the sum of financial

wealth and the present value of all wages accruing to existing agents (“human capital”) — is

determinate and equal to Ct
β . The indeterminacy arises because the fraction due to each of the two

components of wealth is indeterminate. In the presence of bubbles, the total wealth (the sum of

10To confirm this use qt = β−1 inside (29) and then use the resulting expression for
ct,t
Ct

inside (28) to conclude
that rt = ρ+ g + λ− (g + δ) = β − δ > g.
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the present value of dividends, human capital, and bubble) is determinate (and equal to Ct
β ), while

the composition is indeterminate — because the bubble is.

An intuition analogous to the one that we presented in Section 3 helps explain the multiplicity of

equilibrium paths. Take, for instance, two initial values of q0, say qA0 and qB0 with q∗ < qA0 < qB0 <

q∗∗. Both initial values are consistent with a specific path of rational (self-fulfilling) expectations

of interest rates. In case A, as compared to case B, investors expect a longer transition path with

higher initial interest rates and a higher value of the initial bubble. This expectation becomes

self-fulfilling because the higher initial interest rates and the higher initial value of the bubble

shift wealth towards the existing investors, thus lowering the fraction of consumption accruing to

incoming cohorts, and increasing the consumption growth rate of existing cohorts. Because the

Euler equation of existing agents needs to hold, this increase in their consumption growth rate does

indeed lead to a higher interest rate in equilibrium, confirming expectations.

The main difference between our baseline model and the one in this section is that the former

does not rely on bubbles, which may in fact not even be possible. As a consequence, the parameter

restriction β > g+ δ and the associated implication that r < g are not necessary for indeterminacy.

We conclude with a remark. In this section we focused on equilibria in which arriving assets are

priced at their fundamental value. In Appendix B we extend the model to allow arriving agents to

be endowed with new bubbles. An interesting aspect of this extension is that bubbles never perish,

but exist in steady state.

5 Recursive Preferences and Risk Premiums

The sunspot equilibria of Proposition 2 imply that in this model one has substantial freedom to

specify the volatility process for asset prices so as to match the high empirical volatility of asset

returns. An unattractive feature of such equilibria, however, is that there can be no risk premiums

if investors have expected utility preferences. The consumption processes of all agents are locally

deterministic processes (i.e., have no diffusion component); therefore, despite volatile asset prices,

the risk premium remains zero.

In this section we show that risk premiums are non-zero when investors have recursive Epstein-

Zin-Weil (EZW) utilities. Intuitively, with EZW utilities risk premiums are affected not only by the

covariance between asset returns and instantaneous consumption growth, but also by the covari-
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ance between asset returns and long-run consumption growth. In this model, while instantaneous

consumption growth is locally deterministic, the consumption growth of a given cohort of investors

integrated over a period of time is stochastic. This stochastic nature of long run consumption

growth gives rise to positive risk premiums.

We keep the presentation in this section intentionally concise, because the introduction of

recursive preferences does not affect any of the key insights of the model beyond generating a

risk premium. Specifically, the model is the same as in Section 2, with one modification: while

agents’ intertemporal elasticity of substitution continues to equal one, their risk aversion may take

any value. Specifically, we assume the investors’ instantaneous utility flow is no longer given by

log (ct,s) but rather by the aggregator

f (ct,s,Vt,s) = (1 + γVt,s)

(
log ct,s −

β

γ
log (1 + γVt,s)

)
, (33)

where Vt,s is a consumer’s value function and γ < β controls her risk aversion. Utilities of this

form are discussed extensively in Duffie and Epstein (1992) and Schroder and Skiadas (1999).

They correspond to the continuous-time limit of Epstein-Zin-Weil utilities with unit elasticity of

substitution.

As is highlighted in Schroeder and Skiadas (1999), a convenient transformation is given by

Ut,s ≡ 1
γ log (1 + γVt,s) , resulting in

Ut,s = Et

∫ ∞
t

e−β(u−t)
(

log (cu,s) du+
γ

2
d [U ]u,s

)
, (34)

where d[U ]t,s is the time-t quadratic variation of Ut,s. Following a common convention in the

literature, we will refer to Ut,s as anticipated “long run consumption growth.”

With these preferences, the log-stochastic discount factor (SDF) log(mt) follows the dynamics

d log(mt) = γ (log ct,s − βUt,s) dt− βdt+ γdUt,s − d log ct,s. (35)

The key feature of (35) is that risk premiums are associated not only with variations in the current

consumption flow; variations in anticipated long run consumption growth Ut,s enter the stochastic

discount factor as well.

We note that, given the unitary intertemporal substitution, the relation between qdt = qt and qlt
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is still given by Lemma 1, while the cutoff ζt, and consequently ηt, continue to be functions of qt

only.

The following proposition contains the main result of this section.

Proposition 4 Suppose that investors have preferences of the form (33). Take an interval [qmin, qmax] ⊂

[q1, q3] and a volatility process σ(qt) with the same properties as in Proposition 2. Then there exists

an equilibrium in which the stochastic process for qt obeys the diffusion

dqt = (A (qt) + κ (qt)σ (qt)) dt+ σ (qt) dBt, (36)

where κ (qt), the market price of risk (Sharpe ratio) in this economy, is given by

κ (qt) = −γZ ′ (qt)σ (qt) (37)

with Z(q) solving the second-order differential equation

Z ′′

2
σ(q)2 +

(
A(q)− γZ ′σ(q)2

)
Z ′ − βZ − αηq +

γ

2
(Z ′)2σ(q)2 = 0. (38)

In equilibrium, qlt continues to obey the relation (15) and rt continues to satisfy (22).

The equilibria associated with Proposition 4 are sunspot equilibria, similar to the ones of Propo-

sition 2. The only material change is that the asset-price dynamics are now given by (36), with

the additional term κ (qt)σ(qt) = −γZ ′(qt)σ(qt)
2 reflecting an equity premium. As we show in the

appendix, the term Z ′(qt)σ(qt) can be interpreted as the volatility of an agent’s long-run consump-

tion growth, with Z(qt) determined by the differential equation (38). By (37), the Sharpe ratio κt

is proportional to the volatility of long run consumption growth.

Intuitively, since the drift of the consumption growth of a marginal agent depends on qt, and qt

is persistent, a sunspot shock to qt impacts not just the current consumption drift of the marginal

agent, but also future consumption drifts. Thus, the stochastic sunspot shocks impact the long-

run consumption growth rate of an agent, and — with recursive preferences — introduce a risk

premium, which modifies the required rate of return and hence the drift of qt in equation (36).

In the next section we illustrate Proposition 4 numerically, by solving the differential equation

(38) and evaluating the model’s implications for asset price dynamics.
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6 Quantitative Evaluation

Tests of macro asset-pricing models exploit the links between observed asset prices and real quan-

tities (consumption, dividends, etc.). These same relations remain testable whether the origin of

the fluctuations is fundamental (such as an exogenous productivity shock), or extrinsic, in which

case asset prices and real quantities are jointly determined in response to expectational shocks.

Therefore, our model is testable like any conventional asset pricing model: Conditional on a choice

of preference parameters, and a specification of the stochastic process for the volatility of qt, which

can be disciplined by data, all the remaining quantities and prices are uniquely determined (real

interest rate, Sharpe ratio, dividend growth, consumption allocations across cohorts, etc.), and

therefore provide a basis for comparison to the data.

In order to carry out this comparison, we fix a set of parameters that have direct data counter-

parts and choose preference parameters in line with the literature. We then choose the functions

η(qt) and σ(qt) to reproduce a realistic range, autocorrelation, and volatility of the log-price divi-

dend ratio.

In terms of parameters that have direct empirical counterparts, we choose α = 0.33 for the

fraction of output accruing as profits and g = 0.023 for aggregate growth. We assume a subjective

discount rate of β = 0.027, equal to the death rate plus one percent to reflect time discounting.11

For the human capital profile we set δl + g = 0.05. This choice is motivated by simplicity, since

it implies that a human capitalists’ income is constant over her life.12

We specify the functions η(q) and σ(q) so that log(qt) has an autocorrelation and volatility

similar to the data. Specifically, we choose

η(q) = max

(
q−1 − β + 0.082− 0.03 log(q)

1− βαq
,−(δl + g)

)
. (39)

The truncation at −(δl + g) is to ensure a non-negative entry rate of firms. The specification

(39) implies that the drift of d log(qt) is approximately linear in log(qt) and has a realistic mean-

reversion.13 We opt for a variance specification that ensures that qt has a stationary distribution

11In the model death and birth rates are equal for simplicity. In the data the birth rate (plus immigration rate) is
2.7% and the death rate is approximately one percent lower than that. For the determination of β the death rate is
the relevant quantity.

12By equation (2), if δl = λ, then wt,s is independent of t. Accordingly, if g = 0.023, the choice δl + g = 0.05.
implies that δl = 0.027, which is approximately equal to the birth rate (plus immigration rate) in the data.

13The specification (39) inside (24) implies that q̇t
qt

is linear in log(qt). Note that the actual drift of log(qt) in the
model will not be exactly linear for a multitude of reasons. Equation (24) does not account for a risk premium, a
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Data Model

Average aggregate consumption growth rate 2.3% 2.3%
Volatility of aggregate consumption growth rate 3.3% 0%
Individual agents’ annual volatility of consumption growth 0.60%
Sharpe ratio 0.29 0.24
Stock market volatility 18.2% 16.44%
Equity premium 5.2% 4.63%
Interest rate 2.8% 0.80%
Standard deviation of the interest rate 0.92% 0.60%
Average (log) price-dividend ratio 3.21 2.91
Standard deviation of the log price-dividend ratio 0.27 0.28
Autocorrelation of the log price-dividend ratio 0.89 0.92
Dividend growth volatility 11.2% 8.45%

Table 1: Unconditional moments for the data and the model (both annualized). The
data for the average equity premium, the volatility of returns, and the level of the in-
terest rate are from the long historical sample available from the website of R. Shiller
(http://www.econ.yale.edu/?shiller/data/chapt26.xls). The volatility of the “real rate” is inferred
from the yields of 5-year constant maturity TIPS. The model-implied excess returns, dividend
growth, and log-price dividend ratio are adjusted for leverage.

in the range (2,40). Specifically, we choose the simple, linear function σ2(q) = 1.1 × (40.9 − q)

for values of q above 18.9. For values below 18.9 we choose an increasing function that ensures

the technical requirements for stationarity of Proposition 4.14 With this specification of volatility,

the model produces a simple, declining, and approximately linear relationship between the level

and the volatility of the log-price dividend ratio for the 5%-95% stationary range of values of the

log price-dividend ratio as the bottom right graph of Figure 2 shows. Finally, the choice of γ

corresponds to a relative risk aversion of 10.

Table 1 provides a comparison between the model-implied unconditional moments and the

respective moments in the data. In reporting the results we follow the approach of Barro (2006)

to relate the results of our model (which produces implications for an all-equity financed firm) to

convexity adjustment is missing, and the truncation by −(δl + g) may bind. Nevertheless, in the simulation we find
that specification (39) implies a drift of log(qt) that is approximately linear in log(qt) around the stochastic steady
state.

14The precise specification of the volatility in this range has no major impact on the quantitative results, and
several specifications would satisfy the stationarity requirements. For the calibration we choose

σ2 (q) = q2 ×
(
w (q) 0.262 + (1− w (q)) 0.022)× 1{q∈(2.19,18.9)}+

1.1× (40.9− q)× 1{q≥18.9} + 0.255× (q − 2.18)× 1{q≤2.19},

where w (q) = log(q)−0.78
2.94

− 0.78.
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the data (which pertain to leveraged equity). Specifically, we use the Modigliani-Miller formula

relating the returns of leveraged equity to those of unleveled equity, along with the historically

observed debt-to-equity ratio, to report model-implied leveraged returns. (To do so, we set the

ratio of levered to unlevered equity returns to be equal to 1.7, similar to Barro (2006)).15 With this

adjustment, the excess returns of levered equity are 1.7 times the excess returns of model-implied

unlevered equity, the price-dividend ratio of levered equity is 1
1.7 times the price-dividend ratio of

unlevered equity, and the (per-share) dividend growth of levered equity is adjusted for leverage

according to equation (98) in Appendix E. For comparison purposes, Table 3 in the appendix

contains the model-implied moments for unlevered equity.

Inspection of Table 1 shows that the model delivers simulated moments that are of similar mag-

nitude to their empirical counterparts. Since the model was calibrated to approximately reproduce

the time series properties of the price-dividend ratio in the data, we would like to focus attention

on the moments that were not targets of the calibration, specifically the Sharpe ratio, the interest

rate, and the equity premium, along with the volatility of the interest rate and the dividend-growth

volatility of the market portfolio. We find these moments telling for a simple reason: While the

model was calibrated to reproduce the volatility of the price-dividend ratio, it was not calibrated

to reproduce the fact that the volatility of the price-dividend ratio in the data seems to be mostly

driven by variation in discount rates (rather than dividend growth) arising predominantly from

variations in the equity premium (rather than the interest rate). Table 1 shows that the volatility

of both the interest rate and the dividend growth of the market portfolio are close to their empirical

counterparts.

Figure 2 presents the equity premium, Sharpe ratio, interest rate, and volatility of returns

as functions of the log-price dividend ratio of levered equity. We choose the range of the log

price-dividend ratio in these graphs to correspond to the 5–95 percentile range of the stationary

distribution of the log price dividend ratio in the model. The Sharpe ratio and the equity premium

decline as the log price-dividend ratio increases, which suggests that the log price-dividend ratio

should be able to predict returns with a negative sign. (We discuss the results of such predictability

regressions shortly). The figure also shows that the range of values of the equity premium is

substantially larger than the respective range for the interest rate. The low volatility of the interest

15 A more aggressive choice is to set that parameter as the ratio of consumption growth volatility to dividend
growth volatility, which results in a value around 3. See, for instance Bansal and Yaron (2004).
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Figure 2: Calibration results. Equity premium, market price of risk (Sharpe ratio), interest rate,
and stock return volatility as a function of the log price-dividend ratio of levered equity. The range
of values of the log-price dividend ratio corresponds to the interval between the bottom and top
5-th percentiles of the stationary distribution of the log price-dividend ratio in the model. The
equity premium and volatility are adjusted for leverage.

rate is re-assuring for an additional reason: Given equation (18), the interest rate is equal (up to

an additive constant) to the consumption growth of existing agents. Accordingly, the low variation

of the interest rate shows that the model does not require very strong variation in (the drift of)

existing agents’ consumption growth to deliver a realistic Sharpe ratio.

Finally, Table 2 reports results from standard predictability regressions in model simulations

and in the data. As is well understood, the finite sample properties of predictability regressions

make it very hard to precisely estimate regression coefficients over samples that are of length similar

to the data. For this reason, we follow the standard practice of reporting both the mean and the

95% range of the model-implied regression estimates, which we obtain from simulating the model

over 1000 independent 100-year-long samples. The table shows that the log-price-dividend ratio

is a strong predictor of excess returns inside the model. The magnitudes for the R2 of these

predictability regressions are quite similar to the data, while the point estimates are somewhat

larger in the model than in the data, but with the data estimate being well within the 95% range

of the regression estimates obtained in simulations.

While throughout the paper we assume the difference in the depreciation rates ηt to be endoge-
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Year β (Data) β (Model) R2(Data) R2(Model)

1 -0.130 -0.263 0.040 0.068
[-0.562 0.020] [0.002 0.162]

3 -0.350 -0.655 0.090 0.169
[-1.260 0.029] [0.005 0.377]

5 -0.600 -0.923 0.180 0.239
[-1.691 -0.001] [0.007 0.500]

7 -0.750 -1.114 0.230 0.289
[-1.924 -0.043] [0.009 0.564]

Table 2: Long-horizon regressions of excess returns on the log P/D ratio. The simulated data are
based on 1000 independent simulations of 100-year long samples. For each of these 100-year long
simulated samples, we run predictive regressions of the form logRet→t+h = α+β log(Pt/Dt) , where
logRet→t+h denotes the time-t gross excess return over the next h years. We report the mean values
for the coefficient β and the R2 of these regressions, along with the 95% confidence interval reported
in square brackets below the estimate..

nous, the same results obtain if ηt is an exogenous process, specified to have the same dynamics as

the endogenously derived η(qt). Given the theoretical focus of this paper and our goal to illustrate

the interactions between the wealth distribution and discount rates, we chose to abstract from fun-

damental shocks, which would mostly be a distraction. However, the quantitative conclusion that

the model can deliver volatile valuations without relying on dividend or interest rate variations is

not dependent on the nature of shocks.

7 Conclusion

This paper focuses on the joint determination of discount rates and the distribution of wealth.

The model features three key elements: a) there exist several assets, with different sensitivities to

discount rates; b) agents have heterogeneous exposures to these assets; and c) only some agents

are marginal for pricing assets at a given point in time. As a consequence, fluctuations in the

components of wealth cause wealth redistribution amongst different groups of agents, which in turn

feeds back into these fluctuations.

The starkest implication of this feedback loop is the possibility of self-fulfilling anticipations

of future discount rates. Specifically, shifts in expectations of future discount rates can change

the wealth composition, and consequently redistribute wealth, in such a way that the resulting
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consumption-saving decisions confirm the anticipated discount rates.

As part of our analysis, we provide a new interpretation of the source of indeterminacy in models

with rational bubbles. Contrary to the conventional wisdom, which considers the indeterminacy of

equilibrium to be the direct consequence of the indeterminate magnitude of the bubble, we argue

that the presence of a bubble is just an ancillary feature to trigger the interactions between the

wealth distribution and the discount rates that we highlight in the context of our model.

Besides expanding the scope of the analysis to situations in which bubbles cannot exist, our

model presents the advantage that the useful Campbell-Shiller-type decompositions of asset price

fluctuations continue to apply. Utilizing these present value relations, one can confront the model

with the data in the same way as any conventional asset pricing model. The feedback effects that

we highlight can help reconcile volatile asset prices, high equity premiums, and predictable excess

returns on the one hand with substantially less volatile real quantities (consumption, dividends,

etc.) on the other.

Finally, while the paper maintains throughout the assumption that all uncertainty is extrinsic,

we view this assumption primarily as a useful way to sharpen and clarify our results. The feedback

effects that we highlight, along with their asset pricing implications, continue to obtain in versions

of the model in which the redistributional shocks take an intrinsic form.
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Appendix

A Proofs

Proof of Lemma 1. The absence of bubbles together with the assumption of a unit elasticity

of substitution implies that aggregate consumption is given by Ct = β
(
W̄t + H̄t

)
, where W̄t is the

present value of dividends of all existing firms

W̄t =

∫ t

−∞
qdt,s Dt,sds = qdt

∫ t

−∞
Dt,sds = αqdt Yt, (40)

and Ht is the present value of the earnings of all existing workers.

H̄t =

∫ t

−∞
qlt,swt,slt,sds = (1− α) qltYt. (41)

Combining goods market clearing (Ct = Yt) with (40) and (41), and re-arranging leads to (15).

Proof of Lemma 2. The present value of all newly-born workers’ wages is given by

(1− α) (g + δl)qltYt, while the respective value of all newly created firms is α(g + δdt )qdt Yt. Im-

posing the intertermporal budget constraint and noting that the consumption-to-wealth ratio for

investors with unit elasticity of substitution is β implies that per-capita consumption of the newly

born is given by (21).

Proof of Lemma 3. Since the value function of a newly-born person is logarithmic in wealth,

an entrepreneur indexed by i ∈ [0, ε̄] prefers the risky to the riskless choice if and only if

π log
(
ξ (i) qdt αYt

)
+ (1− π) log

(
qlt

g + δl

1− ε̄+ (1− π) i
(1− α)Yt

)
≥ log

(
ψqdt αYt

)
. (42)

The left hand side gives the value function of trying the risky choice which succeeds with probability

π and fails with probability (1− π), in which case the entrepreneur shares the labor income accruing

to her cohort. The right hand side is the (certain) payoff of the riskless choice. Simplifying and
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re-arranging gives

(1− π) log

(
qdt
qlt

)
≤ π log (ξ (i)α) + (1− π) log

(
(g + δl) (1− α)

1− ε̄+ (1− π) i

)
− log (ψα) . (43)

We note that the right-hand side of this inequality is a decreasing function of i, so that the

set of entrepreneurs making the risky choice takes the form [0, ζt], as stated in the text. It further

follows that decreasing
qdt
qlt

— which by Lemma 1 is equivalent to decreasing qdt — thus the left-hand

side of (43), results in a weakly larger cutoff ζt. (Whenever (43) holds with equality for i = ζt, the

monotonicity of ζt in qdt is strict.)

Proof of Proposition 1. Let Ã (q; η) ≡ (β + η) q − βαηq2 − 1 and define the function

η∗(q) =
1− βq

q(1− αβq)
(44)

for q ∈ (0, 1
αβ ). By construction, Ã(q; η∗(q)) = 0. It is easy to verify (e.g., by direct differentiation)

that η∗ decreases strictly in q. Note also that ∂
∂η Ã(q; η) = q(1− αβq) > 0.

Let η(q) be continuously differentiable and decreasing with the following properties: (i) η(qi) =

η∗(qi) for i ∈ {1, 2, 3}; (ii) η′(qi) > η∗′(qi), i ∈ {1, 3}; (iii) η′(q2) < η∗′(q2). Given that ∂
∂η Ã > 0,

these properties ensure that the proposition holds. Specifically,

dÃ

dq
(q, η(q)) =

∂Ã

∂q
+
∂Ã

∂η

dη

dq
(45)

for any η(q), and dÃ
dq (q, η∗(q)) = 0 since Ã(q; η∗(q)) is constant by the definition of η∗. Consequently,

dÃ
dq |qi(q, η(q)) is strictly positive for i ∈ {1, 3} and strictly negative for i = 2.16

It remains to show that, for such a function η as chosen above, model primitives exist under

which η(q) is an equilibrium outcome. In particular, we need to show the existence of an appropriate

— exogenous — function ξ, based on which the cutoff ζ(q) is determined. These two functions

obey two restrictions: equations (43) — as an equality — and (7).

With i = ζ(q), equation (43) provides the function ξ on the domain constituted by the image

16Note that properties (ii) and (iii) require that η be flatter than η∗ around the extreme qi, and steeper around q2.
This is the precise sense in which η must be sufficiently steep to ensure that q2 is a stable equilibrium.
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of ζ. Rewriting equation (7) as

η(q) = π

∫ ζ(q)

0
ξ(i)di+ (ε̄− ζ(q))ψ − (δl + g), (46)

we have

η′(q) = (πξ(ζ(q))− ψ) ζ ′(q), (47)

or

ζ ′(q) =
η′(q)

πξ(ζ(q))− ψ
. (48)

Given ξ(ζ(q)) from (43), this is a first-order ODE in ζ(q).

We wish that a decreasing solution to this ODE exist on [q1, q3] with image in [0, ε̄]. To ensure

the existence of such a solution, we can build one as follows under appropriate parameter choices.

Specifically, we’ll find appropriate values for δl + g, ε̄, and ψ, having fixed the other parameters

arbitrarily, that result in functions ξ(·) and ζ(·) having all the desired properties.

We start by letting ζ(q3) = 0, so that from (46) we have

δl + g = ε̄ψ + η(q3). (49)

By considering ψ increasing without bounds subject to (49) and a fixed ε̄, we have

ψ

δl + g
→ 1

ε̄
(50)

as ψ →∞, which we use in conjunction with equation (43) to derive the existence of constants ci

with 0 < c1 < c2 <∞ such that

lim
ψ→∞

ξ(ζ(q))

ψ
∈ (c1, c2)× ε̄

π−1
π . (51)

These constants can be chosen independently of q ∈ [q1, q3], ζ ∈ [0, ε̄], and ε̄ ∈ [0, ε̃] for a fixed,

arbitrary, ε̃ < 1. All other parameters are fixed. It follows that ε̄ can be chosen small enough to

imply ξ(ζ(q))/ψ > 2/π, say; then, πξ(ζ(q))− ψ > ψ →∞ as ψ →∞.
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With ε̄ fixed, we now let ψ sufficiently large so that πξ(ζ(q)) − ψ > M for a constant M >

maxq |η′(q)|(q3 − q1)/ε̄. We consequently have that the solution to the ODE (48) has the property

ζ(q1) =

∫ q3

q1

−η′(q)
πξ(ζ(q))− ψ

dq (52)

< max
q
|η′(q)|q3 − q1

M
< ε̄. (53)

In summary, we can express ξ as a function of q and ζ(q) from the indifference condition of the

entrepreneur ζ(q). Then the equation relating the displacement quantity δd to the summation of

ξ(i) until ζ(q) provides an ODE in ζ. Finally, to ensure that the solution to the ODE falls in the

interval [0, ε̄], it suffices to choose ε̄ small enough and then let ψ become large, with δl + g ensuring

ζ(q3) = 0.

Proof of Proposition 2. We start with the observation that goods market clearing implies

that in any equilibrium (stochastic or deterministic) the consumption of existing investors — who

are marginal for pricing assets — must be locally deterministic,17 which in turn implies that this

economy cannot have a risk premium for any asset. Additionally, equations (18) and (20) continue

to hold even if qdt is stochastic, as do Lemmas 1, 2, and 3. Accordingly qlt and rt continue to be

given by (15) and (22) respectively. The main equation that needs to be modified is equation (17).

By the definition of qdt we have that

e−
∫ t
s rvdvqdt,sDt,s +

∫ t

s
e−

∫ u
s rvdvDu,sdu ≡ Et

∫ ∞
s

e−
∫ u
s rvdvDu,sdu. (54)

Applying Ito’s Lemma to both sides of (54), substituting rt from (22), recognizing that the right

hand side of (54) is a martingale implies that the drift of qdt in any stochastic equilibrium must

necessarily be given by A
(
qdt
)
. Moreover, if the dynamics of qdt are given by (27), the Feynman-Kac

formula implies that qdt satisfies (13). In a nutshell, if agents perceive that the dynamics of asset

prices are given by (27), and the interest rate is given by (22), then the resulting optimal dynamics

of consumption will be such that the market-clearing interest rate will be given by (22) and the

equilibrium (arbitrage-free) price of each firm will indeed be given by qdtDt,s.

17This follows because aggregate consumption is deterministic, while newly born agents arrive and consume at a
positive, finite rate.
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To prove that qdt is stationary, we start by defining

s (q) ≡ exp

{
−
∫ q 2A (ξ)

σ2 (ξ)
dξ

}
(55)

and we note that an implication of Assumption (26) is that for q ∈ (qmax − ε, qmax) and ε small

enough there exists a finite ν > 1 such that

s (q)

s (qmax − ε)
= exp

{
−
∫ q

qmax−ε

2A (ξ)

σ2 (ξ)
dξ

}
> exp

{
−
∫ q

qmax−ε

ν

qmax − ξ
dξ

}
=

(
qmax − q

ε

)−ν
.

We infer that the speed measure S (q) =
∫ q
s (η) dη) satisfies S(q, qmax) =∞, in the limit sense

of Karlin and Taylor (1981) (equation (6.7) on page 227). Consequently, qmax is not an attainable

boundary. The calculations of Karlin and Taylor (1981), Example 8 on page 239, can similarly be

adapted to show that qmax is in fact an entrance boundary. (A similar argument applies to the

boundary q = qmin.) Then, as Karlin and Taylor (1981) shows, a stationary distribution exists.

Proof of Proposition 3. (i) Note first that, in this case, q∗∗ < q∗. If qt < q∗∗ for some t,

then q̇t < 0, and since q̇ given by equation (30) is concave in q, it follows that qs → −∞ as s→∞,

which is absurd.

If, on the other hand, qt > q∗∗ for some q, then equation (30) implies that qt converges to the

steady state value of q∗. A value q∗ is inconsistent with equilibrium, because it implies a negative

bubble value:

bt
Yt

=
Pt
Yt
− αq∗ =

1

β
− q∗ =

1

β
− 1

g + δ
< 0. (56)

The value of the stock market, however, can only be lower than the present value of dividends

if, at some point in the future, it becomes negative with positive probability, which is incompatible

with free disposal.

(ii) If β < g+ δ, then the stable solution to equation (30) is a steady-state equilibrium, as is the

unstable solution qt = q∗. In the former case, the bubble value is strictly positive. The stability of

the steady-state equilibrium qt = q∗∗ allows for the existence of a continuum of equilibrium paths,

all of which converging to q∗∗. Any such path must start from q0 ∈ (q∗, q∗∗].
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Differentiating equation (32) gives

ḃt =
1

β
Ẏt − q̇tYt − qtẎt = Yt

(
g

(
1

β
− qt

)
−
(
rt + δt −

1

qt

)
qt

)
= Yt

(
g

β
− (rt + g + δ) qt + 1

)
= Yt

(
rt
β
− rtqt

)
+ Yt

(
g − rt
β

+ 1− (g + δ)qt

)
= rtbt, (57)

where the last equality is obtained by plugging in

rt
β

=
g

β
+ 1− (g + δ)qt, (58)

which follows from from equations (28) and (29), and using the definition of bt.

The last statement of the proposition follows from (58) and 1− (g+ δ)qt > 1− (g+ δ)q0 > 0.

Proof of Proposition 4. In a stochastic economy the SDF in the presence of annuities is

given by

d logmt = − (rt + λ) dt− κ2
t

2
dt− κtdBt, (59)

where κt is the Sharpe ratio. In the special case in which preferences are given by (33), the SDF

satisfies the evolution equation

d log(mt) = fV (c, V )dt+ d log(fc(c, V ), (60)

which results in

d logmt = γ (log ct,s − βUt,s) dt− βdt+ γdUt,s − d log ct,s. (61)

As is shown in Garleanu and Panageas (2015), the fact that the investment opportunity set

(rt, κt), the hazard rate of death, and the discount rate are the same for all investors implies that

d log ct,s is independent of s for s < t. Accordingly, dUt,s is independent of s and we omit the
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subscript s in equation (61). For any s < t, the definition of Ut implies

e−βtUt +

∫ t

s
e−βu

(
log (cu) +

γ

2
d [U ]u

)
= Et

∫ ∞
s

e−βu
(

log (cu) du+
γ

2
d [U ]u

)
. (62)

Differentiating both sides with respect to t, noting that the right hand side is a martingale, and

using the martingale representation theorem implies that

−βUtdt+ dUt +
(

log (ct) +
γ

2
σ2
U,t

)
dt = σU,tdBt.

Upon re-arranging we obtain

γdUt =

[
−γ log (ct)−

γ2

2
σ2
U,t + γβUt

]
dt+ γσU,tdBt (63)

Plugging (63) into (61) and re-arranging gives

d logmt = −βdt− d log ct −
γ2

2
σ2
U,tdt+ γσU,tdBt. (64)

Market clearing requires that d log ct is locally deterministic, since aggregate consumption

λ
∫ t
−∞ e

−λ(t−s)ct,sds is deterministic. We can therefore write d log ct = ċt
ct
. Comparing (59) with

(64) and matching drift and diffusion terms results in

ċt
ct

= −(ρ− rt), (65)

which is equation (18), and κt = −γσU,t.

Since equation (18) holds, the interest rate continues to be given by (22) and Lemma 1 continues

to hold. Accordingly, rt = r
(
qdt
)
, that is, the interest rate is a function of qdt . We conjecture (and

verify shortly) that the Sharpe ratio is also a function of qdt , so that we can write κt = κ
(
qdt
)
. Then

the requirement that the SDF-discounted gains process from investing in a stock be a martingale

leads to (36).

To verify that the Sharpe ratio is a function of qdt , we now compute the dynamics of Ut.

Expressing equation (18) as d log ct = − (ρ− rt) dt, we obtain

Ut = Et

∫ ∞
t

e−β(u−t) log (cu) du+
γ

2
Et

∫ ∞
t

e−β(u−t)d [U ]u .

38



We next write

Et

∫ ∞
t

e−β(u−t) log (cu) du = Et

∫ ∞
t

e−β(u−t)
(

log (ct) +

(∫ u

t
(rx − ρ) dx

))
du

=
log ct
β

+ Et

∫ ∞
t

e−β(u−t)
∫ u

t
(rs − ρ)ds du.

Since rt = r(qt) and qt is Markovian (under the assumption κt = κ(qt)), it follows that

Ut =
log(ct)

β
+ Z̃(qt) (66)

for an appropriate function Z̃. Since ct has zero volatility, we have

σU,t = Z̃ ′(qt)σ(qt), (67)

confirming the conjecture that κt is a function of qt.

Finally, plugging (66) on the left-hand side of equation (62) and computing the drift of this

term we obtain the ODE

σ2

2
Z̃ ′′(q) + (A (q) + κ (q)σ (q)) Z̃ ′(q)− βZ̃(q) +

r (q)− ρ
β

+
γ

2

(
Z̃ ′(q)

)2
σ(q)2 = 0. (68)

Equation (22) and Lemma 2 imply Z̃ (qt) = Z (qt) + const., where Z (qt) solves (38).

To summarize, the construction of equilibrium starts by making a choice of σ (qt) subject to the

same technical conditions as in Proposition 2. Conditional on this choice, and given the function

η(q), we obtain a solution to (38). Then the equilibrium dynamics of qt are given by the stochastic

differential equation (36) and the dynamics of the interest rate by (22).

B Bubbles introduced by arriving cohorts

We revisit here the model of Section 4 and allow the incoming cohorts to introduce bubbles. We

show that the results of Section 4 continue to hold. Namely, as long as β < g + δ, we construct

equilibria in which arriving assets are priced above the fundamental value. In the interest of

simplicity, we focus on the case in which the total value of the bubbles introduced by arriving
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cohorts per unit of time is b̄Yt for a given b̄ > 0 that is restricted appropriately in Lemma 4 below.

Under this assumption, equation (29) becomes

ct,t
Yt

=
β

λ

(
(g + δ)qt + b̄

)
. (69)

Accordingly, equation (30) becomes

q̇t =
(
β + g + δ − βb̄

)
qt − (g + δ)βq2

t − 1. (70)

Lemma 4 For any b̄ <
β+g+δ−

√
4(g+δ)β

β there exist two steady state values of qt, lying in the

interval
(

1
g+δ ,

1
β

)
. In either of these equilibria the total detrended value of the bubble in the economy

is positive in the long run.

Proof of Lemma 4. Setting q̇t = 0 in equation (70) generates a quadratic equation for the

steady-state values of qt. This equation admits two real solutions as long as b̄ <
β+g+δ−

√
4(g+δ)β

β .

We omit the rest of the proof.

A practical consequence of Lemma 4 is that the aggregate value of the bubble does not disappear

asymptotically in either steady state. If q̂∗ < q̂∗∗ are the two stead-state values for q, then any

initial value q0 in the range (q̂∗, 1
β ] leads to the same steady state value q̂∗∗ and the same value of

the aggregate stock market Pt =
(

1
β − (1− α) q̂∗∗

)
Yt, asymptotically. As a fraction of output, the

total value of bubbles in the economy approaches 1
β − q̂

∗∗ > 0.

C General IES

Here we repeat the analysis of Section 3, but assuming that the per-period utility function is

U (c) = c1−φ
−1

1−φ−1 . Equation (18) becomes

ċt,s
ct,s

= −φ (ρ− rt) (71)

so that (19) now leads to

rt = β + φ−1

(
g − λct,t

Yt

)
. (72)
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To determine
ct,t
Yt

, we define ft as the ratio of the present discounted value of an agent’s future

consumption to her current consumption:

ft :=

∫ ∞
t

e−
∫ u
t (rv+λ)dv

(
cu,s
ct,s

)
du =

∫ ∞
t

e(φ−1)
∫ u
t rvdv−(ρφ+λ)(u−t)du, (73)

where we used (71). Recognizing that the present value of consumption equals an agent’s total

wealth, we obtain an analog to Lemma 2,

ct,t
Yt

=
1

ftλ

(
(1− α) (g + δl)qlt + α(g + δdt )qdt

)
, (74)

and an analog to Lemma 1:

(1− α) qlt = ft − αqdt . (75)

Substituting (75) into (74) and then into (72) leads to

rt = β + φ−1

(
δl − αηt

qdt
ft

)
. (76)

Finally, observing that δdt continues to be exclusively a function of
qdt
qlt

according to an equation

analogous to (43), we conclude that the dynamics of the economy can be described in terms of the

dynamics of (qdt , ft) =: (qt, ft). Differentiating (73), we have

q̇t =
(
rt + δdt

)
qt − 1 (77)

ḟt = (ρφ+ λ+ (1− φ) rt) ft − 1, (78)

keeping in mind that rt is given by (76).

We next study the dynamics of the system (77)–(78) starting with the special case corresponding

to the limit φ→ 1, i.e., u(c) = log(c). As shown by Proposition 1, we have then — under appropriate

parameter choices — that the dynamical system (77)–(78) exhibits two unstable steady states and

one saddle-path steady state whose stable arm involves ft = ρ + λ = β for all t and dynamics for

qt given by (25).

For φ 6= 1 we have the following result.

Proposition 5 Choose a set of parameters under which the conclusion of Proposition 1 obtains.
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For φ sufficiently close to one, the dynamical system (77)–(78) has a saddle-path-stable steady state.

Proof of Proposition 5. By assumption, when φ = 1 there exists a (saddle-path) stable

steady state with long run values for qt and ft given by q2, respectively 1
β . The continuity of the

right-hand side of (77)–(78) implies that for ε := |φ−1| > 0 sufficiently small, there exists a steady

state
(
qSS , fSS

)
in the neighborhood of

(
q2,

1
β

)
. At this steady state, the Jacobean matrix is

J =

(∂r∂q + ∂δd

∂q

)
qSS + 1

qSS

(
∂r
∂f + ∂δd

∂f

)
qSS

− (φ− 1) fSS ∂r∂q
1
fSS
− (φ− 1) fSS ∂r∂f

 . (79)

As ε → 0, (qSS , fSS) → (q2,
1
β ) and the eigenvalues of J converge to (drdq + dδd

dq )q(2) + 1
q(2)

< 0

and β > 0, where the negativity of the first eigenvalue follows from A′(q2) < 0 (Proposition 1).

The continuity of J in (q, f) implies that the system remains saddle-path stable for φ sufficiently

close to unity.

Unsurprisingly, when the IES is close to one, the model behaves similarly to our benchmark

(log) model, and in particular shares its properties. For qualitative departures from the benchmark

model, larger parameter deviations are necessary. One such departure that is interesting to establish

is that new-firm entry can be positively related to the valuation ratio q = qd, which is the opposite

of the benchmark model.

The main idea behind a result of this nature is to recognize that, in order to pair higher entry,

thus depreciation, rates with the higher asset valuation ratios, the interest rates must react in the

opposite direction, and even more than the depreciation rates, to changes in the state variable.

Thus, when depreciation rates are high, so that marginal agents’ consumption growth is low, the

interest rates have to be very low, which follows if the IES is sufficiently smaller than one.

Here is a formal result.

Proposition 6 For φ close enough to zero, a specification of δdt = δd(qt/ft) exists so that the

dynamical system (77)–(78) has a stable steady state and δdt and qt are positively correlated.

Proof of Proposition 6. Let zt := qt
ft

, and

δ(z) = δl +
δl

α
z−1 + φ (αz)−1

(
(β − a) +

(
δl +

δl

α
z−1

)
− g(z − zSS)

)
, (80)
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so that, from (76), we have

r(z) = a−
(
δl +

δl

α
z−1

)
+ g(z − zSS). (81)

Here, a is a constant, which we can specify later to help achieve our objective. Similarly for the

increasing function g, with g(0) = 0; the constant zSS will be chosen to ensure that it equals the

steady-state value of z.

We need to be able to ensure two properties. First, that the system admits a stable steady-state

solution; and second, that, in a neighborhood of such a steady state, q increases on a path on which

z decreases. Our strategy is as follows: specify zSS and a so that r and r + δ increase in z around

the steady state, which equals zSS , and the steady state is stable. Under these properties, it follows

immediately that, for low — and therefore increasing — z, thus low discount rates, both q and f

decrease.

To ensure stability, we start by computing the determinant of J , noting that ∂r
∂q q = r′z, ∂r∂qf = r′,

∂r
∂f q = −r′z2, and ∂r

∂f f = −r′z, as well as analogous relations for the derivatives of δd. Multiplying

this determinant by q2/z, we obtain

z(r + δd)′ +
(
1− (1− φ)r′

)
, (82)

which we want to be negative at the steady state. As for the steady state, from (77)–(78) we have

the equation

(
r
(
zSS
)

+ δd
(
zSS
))
zSS = ρφ+ λ+ (1− φ)r

(
zSS
)
. (83)

Plugging the resulting expression for zSS into equation (82), we obtain the condition

(r + δ)′

r + δ
<

(1− φ)r′ − 1

(1− φ)r + ρφ+ λ
, (84)

when evaluated at z = zSS .

We now observe that, if we choose a value zSS < min
{

1,
√
α−1δl

}
and solve for a such that
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the limit of equation (83) as φ→ 0, i.e.,

zSS =
λ+ a− δl − α−1δl(zSS)−1

a
, (85)

holds,18 then the corresponding limit of condition (84) becomes

g′(0)

a
<
α−1δl

(
zSS
)−2

+ g′(0)− 1

r (zSS) + λ
. (86)

This inequality is clearly satisfied for g′(0) > 0 small enough, given that our initial choice of

zSS satisfies α−1δl
(
zSS
)−2 − 1 > 0.

Since all the terms in (83) and (84) are continuous in φ−1 — and the limits as φ−1 → 0 exist

and are finite, as we saw above — the conclusion holds for non-zero values of φ−1, as well. Namely,

a stable steady-state equilibrium exists characterized by r′
(
zSS
)
+(δd)′

(
zSS
)
> 0 and r′

(
zSS
)
> 0.

It then follows, as we argued above, that, in a neighborhood of this steady-state equilibrium, high

entry δd is accompanied by high q — as well as high f and low q
f .

D Extensions

D.1 Firm creation and growth

One of the assumptions of our analysis is that the arrival of new firms only disrupts existing ones,

rather than also leading to extra growth. It is straightforward to relax this assumption without

affecting the key insights of the analysis. We provide a sketch of the argument here.

We start by allowing aggregate growth to be time varying, by letting gt ≡ Ẏt
Yt
, and generalizing

equation (2) to

wt,s ≡
(1− α)

(
δl + gs

)
Yte
−δl(t−s)−

∫ t
s gudu

lt,s
. (87)

With this specification it is straightforward to check that
∫ t
−∞wt,slt,sds = (1− α)Yt. We continue

to assume that dividends are given by (4). The main substantive departure from Section 2.5 is that

18This entails only solving a linear equation in a, which has a solution for any zSS ∈ (0, 1).
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we drop Assumption 1. Instead, we let

νt ≡ π
∫ ζt

0
ξidi+ (ε̄− ζt)ψ

and assume that the depreciation of existing firms’ profits is given by δdt = χνt − g for strictly

positive constants χ ≤ 1 and g. Note that in the special case χ = 1 we recover the setup of Section

2.5. With this specification, aggregate dividends grow at the rate

ḊA
t

DA
t

=

∫ t
−∞ Ḋt,sds

DA
t︸ ︷︷ ︸

=−δdt

+
Dt,t

DA
t︸︷︷︸

=νt

= g + (1− χ) νt. (88)

Repeating the analysis of Section 3, we obtain that the growth rate of the economy is given by

Ẏt
Yt

= gt = g + (1− χ) νt,

and aggregate dividends are a constant fraction α of aggregate output: DA
t = αYt.

High values of χ imply that increased new firm creation impacts mostly the profits of existing

firms without affecting aggregate growth substantially, while low values of χ imply that new firm

creation adds to aggregate growth without substantially affecting the profits of existing firms.

Extending the remainder of the analysis is straightforward. Performing the same calculations

as in the text we conclude that equation (25) continues to hold, with η(qt) = χν(qt)−g+δl. As long

as χ is different from zero, all the qualitative conclusions of the paper pertaining to indeterminacy,

multiple equilibria, etc., remain intact.

D.2 Different depreciation rates within income groups

In the baseline version of the model we assumed that there are two types of income processes,

namely “dividends” and “earnings.” Fundamentally, these two income streams are constructed so

that a) once aggregated across agents they amount to constant fractions of aggregate income, b)

they have different depreciation processes (δl, δdt ), and b) their difference (ηt) is endogenous and

dependent on the arrival rate of new entities that produce the income stream Dt,s. It is immaterial

for our results how the present value of these two income processes is allocated within the arriving

cohort.
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For instance, assume that workers are of two kinds, “high skilled” and “low skilled.” The en-

dowment process of the high-skilled workers is given by (2), except that α now should be interpreted

as the share of aggregate output accruing to “high-skilled” labor. The endowment of low-skilled

workers born at time s is a constant fraction of Dt,s, with the remaining fraction paid out as profits

to owners of the firms created at time s.19 If entrepreneurs fail, they obtain the income process

of a high skilled worker. Moreover, the value of the firms they create reflects that now their firms

obtain a fraction of Dt,s.

This version of the model is equivalent to the baseline model (with a modified parameter α).

The reason is that markets are dynamically complete, so whether one makes the present value of the

stream Dt,s the property of new entrepreneurs at time s or the joint property of entrepreneurs and

low-skilled workers does not impact the present value of resources accruing to the cohort arriving

at time s, and hence the consumption process obtained by the different generations of agents.

Therefore, the interest rate rt also remains unchanged.

By the same token, it is not important to assume that all dividend income depreciates in the

same way. A further extension would have entrepreneurs introduce not only firms with depreciation

rate δdt , but also firms with depreciation rate δl. In this extension, the observed price-dividend ratio

in the market would be a weighted average of qdt and qlt.

E Levered and Unlevered Equity

In our model firms are un-levered; in reality, they are levered. In order to compare the quantitative

predictions of the model to the data, we need to account for this leverage, since it affects the

cash flows accruing to shareholders and, by implication, the stochastic properties of returns and

dividends.

To relate the excess returns of an unlevered firm to those of a levered firm, we introduce some

notation. Specifically, we suppress the vintage s from the notation (since the returns, price-to-

dividend ratios, etc., of all vintages are the same) and let Vt denote the total value of a given firm,

St the value of one share of (levered) equity of this firm, nt the number of shares outstanding, and

19This could be further micro-founded by assuming segmented labor markets, whereby low skilled workers of vintage
s can only work in firms of vintage s.
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Lt the value of debt. Since we abstract from taxes in this paper, we have

ntSt = Vt − Lt. (89)

We will assume that the number of shares nt is not constant, but time-varying. Specifically, the

firm issues or buys back shares in so as to maintain a constant leverage ratio:

ntSt = φVt, (90)

for 0 < φ < 1. This simplifying assumption is standard in the macro-finance literature (see, for

instance, Abel (1999) and Barro (2006)). Equation (89) can be construed as the definition of the

equity value viewed as a portfolio consisting of the firm’s assets and (short) debt. The return on

this portfolio can be computed using either side of the equation, i.e.,

ntdSt +Dtdt = dVt +Dtdt− Ltrtdt. (91)

The left-hand side records the capital gains on the nt shares and the total dividend to equity holders;

the right-hand side records the change in value of firm assets plus the total dividend, minus the net

return to debt holders, i.e., the interest payment.

From (91), we derive the dynamics of St in terms of those of Vt, using (90):

dSt
St

=
dVt − rtLtdt

ntSt

=
1

φ

dVt
Vt
− 1− φ

φ
rtdt. (92)

The number of shares nt must be adjusted to maintain the constant leverage ratio stated by (90),

which means, by Ito’s lemma,

dnt
nt

=

(
Vt
St

)−1

d

(
Vt
St

)
(93)

=
dVt
Vt
− dSt

St
+ σ2

S,t − σV,tσS,t, (94)

where σV,t denotes the volatility of log(Vt) and σS,t that of log(St). These two volatilities are related
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through equation (92), which implies

σS,t =
σV,t
φ
. (95)

Plugging equations (92) and (95) in (94), we obtain the dynamics of nt:

dnt
nt

= −1− φ
φ

(
dVt
Vt
− rtdt

)
+

1− φ
φ2

σ2
V,tdt. (96)

We note that the number of shares nt in equation (96) decreases (increases) when the total

value of the firm experiences a positive shock that makes the total firm value grow faster (slower)

than the interest rate. This is intuitive since maintaining a constant leverage ratio requires share

repurchases (issuance).

We also note that (91) gives the return-per-share as

dSt + Dt
nt
dt

St
− rtdt =

dVt +Dtdt− (1− φ)rtdt

φVt
− rtdt =

1

φ

(
dVt +Dtdt

Vt
− rtdt

)
, (97)

which is the familiar Modigliani-Miller formula.

One useful observation is that dynamics of the dividends per share reflect both the fluctuations

in total dividends and those in the number of shares. The dividend process entering the definition

of the price-per-share is not the total dividend, but rather the dividend-per-share Dt
nt

. According

to Ito’s lemma,

(
Dt

nt

)−1

d

(
Dt

nt

)
=
dDt

Dt
+
dn−1

t

n−1
t

= −(δdt + g)dt+
1− φ
φ

(
dVt
Vt
− rtdt

)
− 1− φ

φ2
σ2
V,tdt+

(1− φ)2

φ2
σ2
V,tdt

=
1− φ
φ

(
dVt
Vt
−
(
rt + σ2

V,t

)
dt

)
− (δdt + g)dt (98)

To summarize the results of this section, we have that i) the excess return of levered equity is 1
φ

times the return of unlevered equity, ii) the dynamics of (per-share) dividends are given by d
(
Dt
nt

)
— equation (98) — for levered equity and dDt for unlevered equity and iii) the price-to-dividend

ratio is qt = qdt = Vt
Dt

for unlevered equity and St
Dt/nt

= φVt
Dt

= φqt for levered equity.

Table 1 in the main text provides the model-implied moments for levered equity, which are more
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No leverage Leverage

Average aggregate consumption growth rate 2.3 % 2.3 %
Volatility of aggregate consumption growth rate 0 % 0 %
Individual agents’ annual volatility of consumption growth 0.60% 0.60%
Sharpe ratio 0.24 0.24
Stock market volatility 9.67% 16.44%
Equity premium 2.72% 4.63%
Interest rate 0.80% 0.80%
Standard deviation of the interest rate 0.60% 0.60%
Average (log) Price-Dividend ratio 3.44 2.91
Standard deviation of the log Price-Dividend ratio 0.28 0.28
Autocorrelation of the log Price-Dividend ratio 0.92 0.92
Dividend growth volatility 3.0% 8.45%

Table 3: Model implied moments for levered and unlevered equity.

readily comparable to the data. Table 3 provides a comparison between model-implied moments

for levered and un-levered equity.
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