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We study how intermediation and asset prices in over-the-

counter markets are affected by illiquidity associated with search

and bargaining. We compute explicitly the prices at which in-

vestors trade with each other, as well as marketmakers’ bid and

ask prices in a dynamic model with strategic agents. Bid-ask

spreads are lower if investors can more easily find other investors,

or have easier access to multiple marketmakers. With a monop-

olistic marketmaker, bid-ask spreads are higher if investors have
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easier access to the marketmaker. We characterize endogenous

search and welfare, and discuss empirical implications.

Keywords: asset pricing, search frictions, bargaining, mar-

ketmaking, welfare, walrasian
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In over-the-counter (OTC) markets, an investor who wishes to sell must

search for a buyer, incurring opportunity or other costs until one is found.

Some OTC markets therefore have intermediaries. Contact with relevant

intermediaries, however, is not immediate. Often, intermediaries must be

approached sequentially. Hence, when two counterparties meet, their bilat-

eral relationship is inherently strategic. Prices are set through a bargaining

process that reflects each investor’s or marketmaker’s alternatives to imme-

diate trade.

These search-and-bargaining features are empirically relevant in many

markets, such as those for mortgage-backed securities, corporate bonds, emerging-

market debt, bank loans, derivatives, and certain equity markets. In real-

estate markets, for example, prices are influenced by imperfect search, the

relative impatience of investors for liquidity, outside options for trade, and

the role and profitability of brokers.

We build a dynamic asset-pricing model capturing these features, and

analytically derive the equilibrium allocations, prices negotiated between in-

vestors, as well as marketmakers’ bid and ask prices. We show how these

equilibrium properties depend on investors’ search abilities, marketmaker

accessibility, and bargaining powers. We determine the search intensities
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that marketmakers choose, and derive the associated welfare implications of

investment in marketmaking.

Our model of search is a variant of the coconuts model of Diamond

(1982).1 A continuum of investors contact each other, independently, at

some mean rate λ, a parameter reflecting search ability. Similarly, market-

makers contact agents at some intensity ρ that reflects dealer availability.

When agents meet, they bargain over the terms of trade. Gains from trade

arise from heterogeneous costs or benefits of holding assets. For example, an

asset owner can be anxious to sell because of a liquidity need or because of

hedging motives. Marketmakers are assumed to off-load their inventories in

a frictionless inter-dealer market, trading with investors in order to capture

part of the difference between the inter-dealer price and investors’ reservation

values.

Asset pricing with exogenous trading frictions has been studied by Ami-

hud and Mendelson (1986), Constantinides (1986), and Vayanos (1998). We

endogenize the trading frictions arising through search and bargaining, and

show their effects on asset prices. In follow-up work, Duffie, Gârleanu, and

Pedersen (2003) extend the model developed here in order to characterize the

impact on asset pricing of search in settings with risk aversion and risk lim-
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its, while Weill (2002) and Vayanos and Wang (2002) consider cross-sectional

asset pricing in extensions with multiple assets.

Market frictions have been used to explain the existence and behavior

of marketmakers. Notably, marketmakers’ bid and ask prices have been ex-

plained by inventory considerations (Garman (1976), Amihud and Mendelson

(1980), and Ho and Stoll (1981)), and by adverse selection arising from asym-

metric information (Bagehot (1971), Glosten and Milgrom (1985), and Kyle

(1985)). In contrast, we model marketmakers who have no inventory risk

because of the existence of inter-dealer markets, and our agents are symmet-

rically informed. In our model, bid and ask prices are set in light of investors’

outside options, which reflect both the accessibility of other marketmakers

and investors’ own abilities to find counterparties.

We show that bid-ask spreads are lower if investors can find each other

more easily.2 The intuition is that improving an investor’s search alternatives

forces marketmakers to give better prices. This result is supported by the

experimental evidence of Lamoureux and Schnitzlein (1997).

An investor also improves his bargaining position relative to a market-

maker if he can more easily find other marketmakers. Hence, despite the

bilateral nature of bargaining between a marketmaker and an investor, mar-
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ketmakers are effectively in competition with each other over order flow,

given the option of investors to search for better terms. Consistent with this

intuition, we prove that competitive prices and vanishing spreads obtain as

marketmakers’ contact intensities become large, provided that marketmakers

do not have all of the bargaining power.

In summary, if investors are more sophisticated (that is, have better ac-

cess to other investors or to marketmakers who do not have total bargaining

power), they receive a tighter bid-ask spread. This implication sets our theory

of intermediation apart from information-based models, in which more so-

phisticated (that is, better informed) investors receive a wider bid-ask spread.

In an extension with heterogeneous investors in the same OTC market,

we show that more sophisticated investors (those with better access to mar-

ketmakers) receive tighter bid-ask spreads because of their improved outside

options. Hence, this result holds both when comparing across markets and

when comparing across investors in the same market. This sets our the-

ory apart from inventory-based models, which would not imply differential

treatment across investors.3 Further, in the heterogeneous-agents extension,

investors with lower search ability may refrain entirely from trade.

Our result seems consistent with behavior in certain OTC markets, such
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as those for interest-rate swaps and foreign exchange, in which asymmetric

information is limited. Anecdotal evidence suggests that “sales traders” give

more competitive prices to sophisticated investors, perceived to have better

outside options.

We also consider cases in which the marketmaker has total bargaining

power. The bid-ask spread of such a monopolistic marketmaker vanishes as

investors are increasingly able to meet each other quickly, as with the case

of competing marketmakers. In contrast, however, more frequent contact

between investors and a monopolistic marketmaker actually widens spreads,

because of the investors’ poorer outside options. Specifically, an investor’s

threat to find a counterparty himself is less credible if the marketmaker has

already executed most of the efficient trades, making it harder for the investor

to find potential counterparties.

Our results regarding the impact of investors’ searches for each other

on dealer spreads are similar in spirit to those of Gehrig (1993) and Yavaş

(1996), who consider monopolistic marketmaking in one-period models.4 We

show that dynamics have an important effect on agents’ bargaining positions,

and thus asset prices, bid-ask spreads, and investments in marketmaking

capacity. Rubinstein and Wolinsky (1987) study the complementary effects
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of marketmaker inventory and consignment agreements in a dynamic search

model.

We consider marketmakers’ choices of search intensity, and the social

efficiency of these choices. A monopolistic marketmaker imposes additional

“networking losses” on investors because his intermediation renders less valu-

able the opportunity of investors to trade directly with each other. A mo-

nopolistic marketmaker thus provides more intermediation than is socially

efficient. Competitive marketmakers may provide even more intermediation,

as they do not consider, in their allocation of resources to search, the im-

pact of their intermediation on the equilibrium allocation of assets among

investors.5

1. MODEL

We fix a probability space (Ω,F , P r) and a filtration {Ft : t ≥ 0} of

sub-σ-algebras satisfying the usual conditions, as defined by Protter (1990).

The filtration represents the resolution over time of information commonly

available to agents.

Two kinds of agents, investors and marketmakers, consume a single non-
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storable consumption good that is used as a numeraire. All agents are risk-

neutral and infinitely lived, with time preferences determined by a constant

discount rate r > 0. Marketmakers hold no inventory and maximize profits.

Investors have access to a risk-free bank account with interest rate r

and to an OTC market for a “consol,” meaning an asset paying dividends

at the constant rate of 1 unit of consumption per year. (Duffie, Gârleanu,

and Pedersen (2003) consider extensions with risky securities and risk-averse

investors.) The consol can be traded only when an investor finds another

investor or a marketmaker, according to a random search model described

below. The bank account can also be viewed as a liquid security that can

be traded instantly. We require that the value Wt of the bank account be

bounded below, ruling out Ponzi schemes.

A fraction s of investors are initially endowed with one unit of the asset.

Investors can hold at most one unit of the asset and cannot shortsell. Because

agents have linear utility, we can restrict attention to equilibria in which, at

any given time and state of the world, an investor holds either 0 or 1 unit of

the asset.

An investor is characterized by whether he owns the asset or not, and by

an intrinsic type that is “high” or “low.” A low-type investor, when owning
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the asset has a holding cost of δ per time unit. A high-type investor has no

such holding cost. There are multiple interpretations of the investor types.

For instance, a low-type investor may have (i) low liquidity (that is, a need

for cash), (ii) high financing costs, (iii) hedging reasons to sell,6 (iv) a relative

tax disadvantage,7 or (v) a lower personal use of the asset. Any investor’s

intrinsic type switches from low to high with intensity λu, and switches back

with intensity λd. For any pair of investors, their intrinsic-type processes are

assumed to be independent.

The full set of investor types is T = {ho, hn, lo, ln}, with the letters “h”

and “l” designating the investor’s intrinsic liquidity state, as above, and with

“o” or “n” indicating whether the investor owns the asset or not, respectively.

We suppose that there is a “continuum” (a non-atomic finite-measure

space) of investors, and let µσ(t) denote the fraction at time t of investors of

type σ ∈ T . Because the fractions of each type of investor add to 1 at any

time t,

(1) µho(t) + µhn(t) + µlo(t) + µln(t) = 1.
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Because the total fraction of investors owning an asset is s,

(2) µho(t) + µlo(t) = s.

A pair of investors can negotiate a trade of the consol whenever they meet,

for a mutually agreeable number of units of current consumption. (The de-

termination of the terms of trade is to be addressed later.) Investors meet,

however, only at random times, in a manner idealized as independent random

search, as follows. At the successive event times of a Poisson process with

some intensity parameter λ, an investor contacts another agent, chosen from

the entire population “at random,” meaning with a uniform distribution

across the investor population. An investor therefore contacts an investor

from a given set D of investors containing a fraction µD of the total pop-

ulation with the mean intensity λµD. The total rate at which a group C

of independently searching investors of mass µC contacts group-D investors

is almost surely µCλµD. Because group D investors contact C investors at

the same total rate, the total meeting rate between the two groups is almost

surely 2λµCµD. This assumes that searches are independent in a sense ap-

propriate for an application of the exact law of large numbers for random
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search and matching among a continuum of agents; Duffie and Sun (2004)

provide an exact discrete-time theorem and proof.8 Random switches in in-

trinsic types types are assumed to be independent of the agent matching

processes.

There is a unit mass of independent non-atomic marketmakers. Market-

makers are also found through search, implying that an investor must bargain

with marketmakers sequentially, as they are found. An investor meets a mar-

ketmaker with a fixed intensity, ρ, which can be interpreted as the sum of the

intensity of investors’ search for marketmakers and marketmakers’ search for

investors.9 When an investor meets a marketmaker, they bargain over the

terms of trade as described in the next section. Marketmakers have access

to an immediately accessible inter-dealer market, on which they unload their

positions, so that they have no inventory at any time.

OTC markets without marketmakers are treated by the special case of

our model with ρ = 0.

2. DYNAMIC SEARCH EQUILIBRIUM WITH COMPETING

MARKETMAKERS

In this section, we explicitly compute the allocations and prices forming a
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dynamic search-and-bargaining equilibrium. In particular, we compute prices

negotiated directly between investors, marketmakers’ bid and ask prices, and

the inter-dealer price.

In equilibrium, low-type asset owners want to sell and high-type non-

owners want to buy. When two such agents meet, they bargain over the

price. Similarly, when investors meet a marketmaker, they bargain over

the price. An investor’s bargaining position depends on his outside option,

which in turn depends on the availability of other counterparties, both now

and in the future, and a marketmaker’s bargaining position depends on the

inter-dealer price. In deriving the equilibrium, we rely on the insight from

bargaining theory that trade happens instantly.10 This allows us to derive a

dynamic equilibrium in two steps. First, we derive the equilibrium masses of

the different investor types. Second, we compute agents’ value functions and

transaction prices (taking as given the masses of the investor types).

Assuming, as discussed in the previous section, that the law of law of large

numbers applies, the rate of change of the mass µlo(t) of low-type owners is

almost surely

µ̇lo(t) = − (2λµhn(t)µlo(t) + ρµm(t)) − λuµlo(t) + λdµho(t),(3)
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where µm(t) = min{µlo(t), µhn(t)}. The first term in (3) reflects the fact that

agents of type hn contact those of type lo at a total rate of λµhn(t)µlo(t), while

agents of type lo contact those of type hn at the same total rate λµhn(t)µlo(t).

At both of these types of encounters, the agent of type lo becomes one of type

ln. This implies a total rate of reduction of mass due to these encounters

of 2λµhn(t)µlo(t). Similarly, investors of type lo meet marketmakers with a

total contact intensity of ρµlo(t). If µlo(t) ≤ µhn(t) then all of these meetings

lead to trade, and the lo agent becomes a ln agent, resulting in a reduction

of µlo of ρµlo(t). If µlo(t) > µhn(t), then not all these meetings result in

trade. This is because marketmakers buy from lo investors and sell to hn

investors, and, in equilibrium, the total intensity of selling must equal the

intensity of buying. Marketmakers meet lo-investors with total intensity ρµlo

and hn-investors with total intensity ρµhn, and, therefore, investors on the

“long side” of the market are rationed. In particular, if µlo(t) > µhn(t) then

lo agents trade with marketmakers only at the intensity ρµhn. In equilibrium

this rationing can be the outcome of bargaining because the marketmaker’s

reservation value (that is, the inter-dealer price) is equal to the reservation

value of the lo-investor.

Finally, the term λuµlo(t) in (3) reflects the migration of owners from low
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to high intrinsic types, and the last term λdµho(t) reflects owners’ change

from high to low intrinsic types.

The rate of change of the other investor-type masses are,

µ̇hn(t) = − (2λµhn(t)µlo(t) + ρµm(t)) + λuµln(t) − λdµhn(t)(4)

µ̇ho(t) = (2λµhn(t)µlo(t) + ρµm(t)) + λuµlo(t) − λdµho(t)(5)

µ̇ln(t) = (2λµhn(t)µlo(t) + ρµm(t)) − λuµln(t) + λdµhn(t).(6)

As in (3), the first terms reflect the result of trade, and the last two terms

are the result of intrinsic-type changes.

In most of the paper we focus on stationary equilibria, that is, equilibria

in which the masses are constant. In our welfare analysis, however, it is more

natural to take the initial masses as given, and, therefore, we develop some

results with any initial mass distribution. The following proposition asserts

the existence, uniqueness, and stability of the steady state.

Proposition 1 There exists a unique constant steady-state solution to (1)–

(6). From any initial condition µ(0) ∈ [0, 1]4 satisfying (1) and (2), the

unique solution µ(t) to (3)–(6) converges to the steady state as t → ∞.

A particular agent’s type process {σ(t) : −∞ < t < +∞} is, in steady-
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state, a 4-state Markov chain with state space T , and with constant switching

intensities determined in the obvious way11 by the steady-state population

masses µ and the intensities λ, λu, and λd. The unique stationary distribution

of any agent’s type process coincides with the cross-sectional distribution µ

of types characterized12 in Proposition 1.

With these equilibrium masses, we will determine the price Pt negotiated

directly between lo and hn investors, the “bid” price Bt at which investors

sell to marketmakers, the “ask” price At at which investors buy from market-

makers, and the inter-dealer price. For this, we use dynamic programming,

by first computing an investor’s utility at time t for remaining lifetime con-

sumption. For a particular agent this “value function” depends, naturally,

only on the agent’s current type σ(t) ∈ T , the current wealth Wt in his bank

account, and time. More specifically, the value function is

U(Wt, σ(t), t) = sup
C,θ

Et

∫ ∞

0

e−rs dCt+s(7)

subject to dWt = rWt dt − dCt + θt

(

1 − δ1{σθ(t) = lo}

)

dt − P̂t dθt,(8)

where Et denotes Ft-conditional expectation, C is a cumulative consumption

process, θt ∈ {0, 1} is a feasible asset holding process, σθ is the type process

induced by θ, and at the time t of a trading opportunity, P̂t ∈ {Pt, At, Bt} is
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the trade price, which depends on the type of counterparty. From (7) and (8)

the value function is linear in wealth, in that U(Wt, σ(t), t) = Wt + Vσ(t)(t),

where13

(9) Vσ(t)(t) = sup
θ

Et

[∫ ∞

t

e−r(s−t) θs

(

1 − δ1{σθ(s) = lo}

)

ds − e−r(s−t)P̂s dθs

]

.

As shown in the appendix, the value functions satisfy the Hamilton-Jacobi-

Bellman (HJB) equations

V̇lo = rVlo − λu(Vho − Vlo) − 2λµhn(P + Vln − Vlo) − ρ(B + Vln − Vlo) − (1 − δ)

V̇ln = rVln − λu(Vhn − Vln)

V̇ho = rVho − λd(Vlo − Vho) − 1(10)

V̇hn = rVhn − λd(Vln − Vhn) − 2λµho(Vho − Vhn − P ) − ρ(Vho − Vhn − A),

suppressing the time argument t, implying that an lo-investor benefits from

a sale at any price greater than Vlo − Vln, and that an hn-investor benefits

from a purchase at any price smaller than Vho−Vhn. Bargaining between the

investors leads to a price between these two values. Specifically, Nash (1950)
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bargaining with a seller bargaining power of q ∈ [0, 1] yields

P = (Vlo − Vln)(1 − q) + (Vho − Vhn)q.(11)

This is also the outcome of the simultaneous-offer bargaining game described

in Kreps (1990), and of the alternating-offer bargaining game described in

Duffie, Gârleanu, and Pedersen (2003).14

Similarly, the bid and ask prices are determined through a bargaining

encounter between investors and marketmakers in which a marketmaker’s

outside option is to trade in the interdealer market at a price of M . Mar-

ketmakers have a fraction, z ∈ [0, 1], of the bargaining power when facing an

investor. Hence, a marketmaker buys from an investor at the bid price B,

and sells at the ask price A, determined by

A = (Vho − Vhn)z + M (1 − z)(12)

B = (Vlo − Vln)z + M (1 − z).(13)

As discussed above, in equilibrium, marketmakers and those investors

on the long side of the market must be indifferent to trading. Hence, if

µlo ≤ µhn, marketmakers meet more potential buyers than sellers. The inter-
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dealer price, M , is therefore equal to the ask price A, and equal to any buyer’s

reservation value, Vho −Vhn. Similarly, if µlo > µhn, then M = B = Vlo −Vln.

In steady state, it is easy to see which side of the market is rationed

because the steady-state fraction of high-type agents is λu(λd + λu)
−1, so we

have

µhn + (s − µlo) =
λu

λd + λu

.

Hence, µlo < µhn in steady state if and only if the following condition is

satisfied.

Condition 1 s < λu/(λu + λd).

An equilibrium is defined as a process (P,A,B, µ, V ) such that: (i)

the system µ of investor masses solves (1)–(6); (ii) the transaction prices

(P,A,B) are those in (11)–(13); and (iii) V solves the HJB equations (9)–

(10) and Vlo−Vln ≤ Vho−Vhn. As there is a continuum of agents, no agent has

the ability to influence mass dynamics with an off-equilibrium-path trading

strategy. These three conditions therefore ensure individual-agent optimal-

ity of the associated equilibrium trading strategies, as well as consistency

between the mass dynamics assumed by agents and those arising from the

equilibrium trading strategies. We derive the equilibrium explicitly. For
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brevity, we report only the prices under Condition 1; the complementary

case is treated in the appendix.

Theorem 2 For any given initial mass distribution µ(0), there exists an

equilibrium. There is a unique steady-state equilibrium. Under Condition 1,

the ask, bid, and inter-investor prices are

A =
1

r
− δ

r

λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq + ρ(1 − z)
(14)

B =
1

r
− δ

r

zr + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq + ρ(1 − z)
(15)

P =
1

r
− δ

r

(1 − q)r + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq + ρ(1 − z)
.(16)

These explicit prices are intuitive. Each price is the present value, 1/r, of

dividends, reduced by an illiquidity discount. All of these prices decrease

in the bargaining power z of the marketmaker, because a higher z makes

trading more costly for investors. The prices increase, however, in the ease

of meeting a marketmaker (ρ) and in the ease of finding another investor

(λ), provided that ρ and λ are large enough. The effect of increasing search

intensities is discussed in Section 4.

From Theorem 2, the bid-ask spread A − B is increasing in the market-

maker’s bargaining power z. The bid-ask spread is decreasing in λ, since a
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high λ means that an investor can easily find a counterparty himself, which

improves his bargaining position. The bid-ask spread is also decreasing in

ρ, provided z < 1 and ρ is sufficiently large. A higher ρ implies that an

investor can quickly find another marketmaker, and this “sequential compe-

tition” improves his bargaining position. If z = 1, however, then the bid-ask

spread is increasing in ρ. The case of z = 1 is perhaps best interpreted as

that of a monopolistic marketmaker, as discussed in the next section. These

comparative-statics results can be derived from the price equations (14)–

(16) and from Equation (A.2), which characterizes the steady-state investor

masses.

3. MONOPOLISTIC MARKETMAKING

We assume here that investors can trade with the monopolistic market-

maker only when they meet one of the marketmaker’s non-atomic “dealers.”

There is a unit mass of such dealers who contact potential investors randomly

and pair-wise independently, letting ρ be the intensity with which a dealer

contacts a given agent. Dealers instantly balance their positions with their

marketmaking firm, which, on the whole, holds no inventory.
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With these assumptions, the equilibrium is computed as in Section 2. The

masses are determined by (3)–(6) and the prices are given by Theorem 2.

It might seem surprising that a single monopolistic marketmaker is equiv-

alent for pricing purposes to many “competing” non-atomic marketmakers.

The result follows from the fact that a search economy is inherently un-

competitive, in that each time agents meet, a bilateral bargaining relation-

ship obtains. With many non-atomic marketmakers, however, it is natural to

assume that z < 1, while a monopolistic marketmaker could be assumed to

have all of the bargaining power (z = 1). In practice, monopolists could de-

velop dominant bargaining power by building a reputation for being “tough,”

or by being larger and wealthier than small investors.15

For these reasons, the label “monopolistic” serves to separate the case

z = 1 from the case z < 1. The distinction between monopolistic and

competitive marketmakers is clarified when search intensities are endogenized

in Section 7.

A monopolistic marketmaker quotes an ask price A and a bid price B

that are, respectively, a buyer’s and a seller’s reservation value. Hence, in

equilibrium, B ≤ P ≤ A.
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4. FAST SEARCH LEADS TO COMPETITIVE PRICES?

A competitive Walrasian equilibrium is characterized by a single price

process at which agents may buy and sell instantly, such that supply equals

demand in each state and at every point in time. A Walrasian allocation is

efficient and all assets are held by agents of high type, if there are enough

such agents,16 which is the case in steady state if s < λu/(λu + λd). In this

case, the unique Walras equilibrium has agent masses

µ∗
ho = s

µ∗
hn =

λu

λu + λd

− s(17)

µ∗
lo = 0

µ∗
ln =

λd

λu + λd

,

and price

P ∗ = Et

[∫ ∞

t

e−r(s−t) ds

]

=
1

r
,(18)

which may be viewed as the reservation value of holding the asset forever for

a hypothetical investor who is always of high type.

In the case that s > λu/(λu + λd), the masses are determined similarly,
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and since the marginal investor has low liquidity, the Walrasian price is the

reservation value of holding the asset indefinitely for a hypothetical agent who

is permanently of low type (that is, P ∗ = (1 − δ)/r). If s = λu/(λu + λd),

then any price P ∗ between 1/r and (1 − δ)/r is a Walrasian equilibrium.

Faster search by either investors or marketmakers leads in the limit to

the efficient allocations µ∗ of the Walrasian market. The following theorem

further determines the circumstances under which prices approach the com-

petitive Walrasian prices, P ∗.

Theorem 3 Let (λk, ρk, µk, Bk, Ak, P k) be a sequence of stationary equilib-

ria.

1. [Fast investors.] If λk → ∞, (ρk) is any sequence, and 0 < q < 1, then

µk → µ∗, and Bk, Ak, and P k converge to the Walrasian price P ∗.

2. [Fast competing marketmakers.] If ρk → ∞, (λk) is any sequence, and z < 1

then µk → µ∗, and Bk, Ak, and P k converge to the Walrasian price P ∗.

3. [Fast monopolistic marketmaker.] If λk = λ is constant, ρk → ∞ is an

increasing sequence, and z = 1, then µk → µ∗ and the bid-ask spread, Ak−Bk,

is increasing.
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Part one shows that prices become competitive and that the bid-ask

spread approaches zero as investors find each other more quickly, regardless

of the nature of intermediation. In other words, the availability to investors’

of a search alternative forces marketmakers to offer relatively competitive

prices, consistent with the evidence of Lamoureux and Schnitzlein (1997).17

Part two shows that fast intermediation by competing marketmakers also

leads to competitive prices and vanishing bid-ask spreads. This may seem

surprising, given that an investor trades with the first encountered market-

maker, and this marketmaker could have almost all bargaining power (z close

to 1). As ρ increases, however, the investor’s outside option when bargaining

with a marketmaker improves, because he can more easily meet another mar-

ketmaker, and this sequential competition ultimately results in competitive

prices.

Part three shows that fast intermediation by a monopolistic marketmaker

does not lead to competitive prices. In fact, the bid-ask spread widens as

intermediation by marketmakers increases. This is because an investor’s

potential “threat” to search for a direct trade with another investor becomes

increasingly less persuasive, since the mass of investors with whom there are

gains from trade is shrinking.
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Contrary to our result, Rubinstein and Wolinsky (1985) find that their

bargaining equilibrium (without intermediaries) does not converge to the

competitive equilibrium as trading frictions approach zero. Gale (1987) ar-

gues that this failure is due to the fact that the total mass of agents entering

their economy is infinite, which makes the competitive equilibrium of the

total economy undefined. Gale (1987) shows that if the total mass of agents

is finite, then the economy (which is not stationary) is Walrasian in the limit.

He suggests that, when considering stationary economies, one should com-

pare the bargaining prices to those of a “flow equilibrium” rather than a

“stock equilibrium.” Our model has a natural determination of steady-state

masses, even though no agent enters the economy. This is accomplished by

considering agents whose types change over time.18 We are able to reconcile

a steady-state economy with convergence to Walrasian outcomes in both a

flow and stock sense, both for allocations and for prices, and by increasing

both investor search and marketmaker search.19

5. NUMERICAL EXAMPLE

We illustrate some of the search effects on asset pricing and marketmaking
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with a numerical example. Figure 1 shows the marketmakers’ bid (B), and

ask (A) prices, as well as the inter-investor price (P ). These prices are plotted

as functions of the intensity, ρ, of meeting dealers. The top panel deals

with the case of competing marketmakers with bargaining power z = 0.8,

whereas the bottom panel treats a monopolistic marketmaker (z = 1). The

parameters underlying these graphs are as follows. First, λd = 0.1 and

λu = 1, which implies that an agent is of high liquidity type 91% of the time.

An investor finds other investors on average every two weeks, that is, λ = 26,

and selling investors have bargaining power q = 0.5. The supply is s = 0.8,

and the interest rate is r = 0.05

Since allocations become more efficient as ρ increases, for both the com-

petitive and monopolistic cases, all prices increase with ρ. Interestingly, in

the case of competing marketmakers (z = 0.8), the bid-ask spread decreases

to zero, and the prices increases to the Walrasian price 1/r = 20. In the case

of a monopolist marketmaker (z = 1), on the other hand, the bid-ask spread

is increasing in ρ, and, due to this spread, the prices are bounded away from

1/r = 20.

The intuition for this difference is as follows. When the dealers’ contact

intensities increase, they execute more trades. Investors then find it more
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difficult to contact other investors with whom to trade. If dealers have all of

the bargaining power, this leads to wider spreads. If dealers don’t have all

of the bargaining power, however, then higher marketmaker intensity leads

to a narrowing of the spread, because an investor has an improved threat of

waiting to trade with the next encountered marketmaker.

6. HETEROGENEOUS INVESTORS

So far, we have assumed that investors are homogeneous with respect

to the speed with which they find counterparties. In certain OTC markets,

however, some investors are more sophisticated than others, in the sense

that they have faster and easier access to counterparties. To capture this ef-

fect, we assume that there are two different investor classes, “sophisticated,”

of total mass µs, and “unsophisticated,” of mass 1 − µs. We assume that

sophisticated investors meet marketmakers with an intensity ρs, while un-

sophisticated investors meet marketmakers at intensity ρu, where ρu < ρs.

We assume here that investors cannot trade directly with each other, that is,

λ = 0. If this assumption is relaxed, and investors are able to find each other

(possibly with type-dependent speeds), then the nature of the equilibrium

28



that we will describe would change for certain parameters. In particular,

sophisticated investors would, under certain conditions, profit from execut-

ing as many trades as possible, and would start acting like marketmakers.

This interesting effect is beyond the scope if this paper; we focus on how

marketmakers react to differences in investor sophistication.

An investor’s type is observable to marketmakers, who have bargaining

power z < 1. When a sophisticated investor meets a marketmaker, the

outcome of their bargaining is a bid price of Bs or an ask price of As. An

unsophisticated investor takes more time to locate a marketmaker, resulting

in higher expected holding costs and a poorer bargaining position. Hence,

unsophisticated investors receive different bid and ask prices, which we denote

by Bu and Au, respectively.

When the supply of shares is so low that sophisticated investors are

“marginal” buyers, then all unsophisticated investors optimally stay out of

the market, that is, they never buy. Similarly, when the asset supply is large,

sophisticated investors are marginal sellers, and unsophisticated investors

hold the asset, never selling. With an intermediate supply, all investors

trade, but unsophisticated investors trade at a larger spread. The following

theorem characterizes the most important properties of the equilibrium with
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heterogeneous investors; a full characterization is in the appendix.

Theorem 4 In equilibrium, unsophisticated investors do not trade if s <

µs λu

λu+λd
or s > 1−µs λd

λu+λd
. Otherwise, all investors trade, and marketmakers

quote a larger bid-ask spread to unsophisticated investors than to sophisticated

investors. That is, Au −Bu > As −Bs. In particular, an agent who meets a

marketmaker with intensity ρ faces a bid-ask of

(19) A − B =
zδ

r + λu + λd + ρ(1 − z)
.

7. ENDOGENOUS SEARCH AND WELFARE

Here, we investigate the search intensities that marketmakers would opti-

mally choose in the two cases considered above: a single monopolistic market-

maker and non-atomic competing marketmakers. We illustrate how market-

makers’ choices of search intensities depend on: (i) a marketmaker’s personal

influence on the equilibrium allocations of assets, and (ii) a marketmaker’s

bargaining power. We take investors’ search intensity λ as given, and assume
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that the meeting intensity ρ between investors and marketmakers is deter-

mined solely by marketmakers’ technology choice. Considering the interac-

tions arising if both investors and intermediaries choose search intensities

would be an interesting issue for future research.20

Because the marketmakers’ search intensities, collectively, affect the masses

µ of investor types, it is natural to take as given the initial masses, µ(0), of

investors, rather than to compare based on the different steady-state masses

corresponding to different choices of search intensities. Hence, in this section,

we are not relying on a steady-state analysis.

We assume that a marketmaker chooses one search intensity and abides

by it. This assumption is convenient, and can be motivated by interpreting

the search intensity as based on a technology that is difficult to change. A

full dynamic analysis of the optimal control of marketmaking intensities with

small switching costs would be interesting, but seems difficult. We merely

assume that marketmakers choose ρ so as to maximize the present value,

using their discount rate r, of future marketmaking spreads, net of the rate

Γ(ρ) of technology costs, where Γ : [0,∞) → [0,∞) is assumed for technical

convenience to be continuously differentiable, strictly convex, with Γ(0) = 0,

Γ′(0) = 0, and limρ→∞ Γ′(ρ) = ∞.
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The marketmaker’s trading profit, per unit of time, is the product of the

volume of trade, ρµm, and the bid-ask spread, A−B. Hence, a monopolistic

marketmaker who searches with an intensity of ρ has an initial valuation of

(20) πM(ρ) = E

[∫ ∞

0

ρµm(t, ρ) (A(t, ρ) − B(t, ρ)) e−rt dt

]

− Γ(ρ)

r
,

where µm = min{µlo, µhn}, and where we are using the obvious notation to

indicate dependence of the solution on ρ and t.

Any one non-atomic marketmaker does not influence the equilibrium

masses of investors, and therefore values his profits at

πC(ρ) = ρE

[∫ ∞

0

µm(t) (A(t) − B(t)) e−rt dt

]

− Γ(ρ)

r
.

An equilibrium intensity, ρC , for non-atomic marketmakers is a solution to

the first-order condition

(21) Γ′(ρC) = rE

[∫ ∞

0

µm(t, ρC)
(

A(t, ρC) − B(t, ρC)
)

e−rt dt

]

.

The following theorem characterizes equilibrium search intensities in the case

of “patient” marketmakers.
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Theorem 5 There exists a marketmaking intensity ρM that maximizes πM(ρ).

There exists r̄ > 0 such that, for all r < r̄ and for each z ∈ [0, 1], a unique

number ρC(z) solves the optimal search intensity condition (20). Moreover,

ρC(0) = 0, ρC(z) is increasing in z, and ρC(1) is larger than any solution,

ρM , to the monopolist’s problem.21

In addition to providing the existence of equilibrium search intensities, this

result establishes that: (i) competing marketmakers provide more market-

making services if they can capture a higher proportion of the gains from

trade, and (ii) competing marketmakers with full bargaining power provide

more marketmaking services than a monopolistic marketmaker, since they

do not internalize the consequences of their search on the masses of investor

types.

To consider the welfare implications of marketmaking in our search econ-

omy, we adopt as a notion of “social welfare” the sum of the utilities of

investors and marketmakers. This can be interpreted as the total investor

utility in the case in which the marketmaker profits are redistributed to in-

vestors, for instance through asset holdings. With our form of linear prefer-

ences, maximizing social welfare is a meaningful concept in that it is equiva-
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lent to requiring that utilities cannot be Pareto improved by changing alloca-

tions and by making initial consumption transfers.22 By “investor welfare,”

we mean the total of investors’ utilities, assuming that marketmakers’ profits

are not redistributed to investors. We take “marketmaker welfare” to be the

total valuation of marketmaking profits, net of the cost of intermediation.

In our risk-neutral framework, welfare losses are easily quantified. The

total “social loss” is the cost Γ(ρ) of intermediation plus the present value

of the stream δµlo(t), t ≥ 0, of dividends wasted through mis-allocation. At

a given marketmaking intensity ρ, this leaves the social welfare

wS(ρ) = E

[∫ ∞

0

(s − δµlo(t)) e−rt dt

]

− Γ(ρ)

r
.

Investor welfare is, similarly,

wI(ρ) = E

[∫ ∞

0

(s − δµlo(t, ρ) − ρµm(t, ρ)(A(t, ρ) − B(t, ρ))) e−rt dt

]

,

and the marketmakers’ welfare is

wM(ρ) = E

[∫ ∞

0

ρµm(t, ρ)(A(t, ρ) − B(t, ρ))e−rt dt

]

− Γ(ρ)

r
.
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We consider first the case of monopolistic marketmaking. We let ρM be

the level of intermediation optimally chosen by the marketmaker, and ρS

be the socially optimal level of intermediation. The relation between the

monopolistic marketmaker’s chosen level ρM of intensity and the socially

optimal intensity ρS is characterized in the following theorem.

Theorem 6 Let z = 1. (i) If investors cannot meet directly, that is, λ =

0, then the investor welfare wI(ρ) is independent of ρ, and a monopolistic

marketmaker provides the socially optimal level ρS of intermediation, that is,

ρM = ρS. (ii) If λ > 0, then wI(ρ) decreases in ρ, and the monopolistic

marketmaker over-invests in intermediation; that is, ρM > ρS, provided q is

0 or 1.

The point of this result is that if investors cannot search, then their

utilities do not depend on the level of intermediation because the monopolist

extracts all gains from trade. In this case, because the monopolist gets all

social benefits from providing intermediation and bears all of the costs, he

chooses the socially optimal level of intermediation.

If, on the other hand, investors can trade directly with each other, then

the marketmaker may exploit the opportunity to invest in additional search

for trades in order to reduce the opportunities of investors to trade directly
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with each other. Therefore, investor welfare decreases with ρ. Consequently,

the marketmaker’s marginal benefit from intermediation is larger than the

social benefit, so there is too much intermediation.23

We now turn to the case of non-atomic (competing) marketmakers. We

saw above that the equilibrium level of intermediation of a non-atomic mar-

ketmaker depends critically on its bargaining power. With no bargaining

power, such a marketmaker provides no intermediation. With complete bar-

gaining power, they search more than a monopolistic marketmaker would.

A government may sometimes be able to affect intermediaries’ market

power, for instance through the enforcement of regulation (DeMarzo, Fish-

man, and Hagerty (2000)). Hence, we consider the following questions: How

much marketmaker market power is socially optimal? How much market

power would the intermediaries choose to have? Would investors prefer that

marketmakers have some market power? These questions are answered in

the following theorem, in which we let zI , zS, and zM denote the market-

maker bargaining power that would be chosen by, respectively, the investors,

a social-welfare maximizing planner, and marketmakers.

Theorem 7 It holds that zI > 0. There is some r̄ > 0 such that, provided

r < r̄, we have zI < zS ≤ zM = 1.
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Investors in our model would prefer to enter a market in which non-atomic

marketmakers have some market power zI > 0, because this gives market-

makers an incentive to provide intermediation. The efficient level of inter-

mediation is achieved with even higher marketmakers, power zS > zI . Mar-

ketmakers themselves prefer to have full bargaining power.

8. EMPIRICAL IMPLICATIONS

This paper lays out a theory of asset pricing and marketmaking based on

search and bargaining. We show how search-based inefficiencies affect prices

through equilibrium allocations and through the effect of search on agents’

bargaining positions, that is, their outside options based on their ability to

trade with other investors or marketmakers.

Consider, for example, the OTC market for interest-rate swaps, which, ac-

cording to the British Bankers Association has open positions totally roughly

$100 trillion dollars. Customers rarely have material private information

about the current level of the underlying interest rates, so standard information-

based explanations of bid-ask spreads are not compelling in this market.

Instead, a “sales trader” sets spreads based on a customer’s (perceived) out-
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side option, and would rarely fear that the customer has superior information

about the underlying interest rates. The customer’s outside option depends

on how easily he can find a counterparty himself (proxied by λ in our model),

and how easily he can access other banks (proxied by ρ in our model). To

trade OTC derivatives with a bank one needs, among other things, an ac-

count and a credit clearance. Smaller investors often have an account with

only one or a few banks, lowering their search options. Hence, a testable

implication of our search framework is that smaller investors, typically those

with fewer search options, receive less favorable prices. We note that these in-

vestors are less likely to be informed, so traditional information-based models

of spreads (for example, Glosten and Milgrom (1985)), applied to this mar-

ket, would have the opposite prediction. Consistent with our results, Schultz

(2001) find that bid-ask spreads are larger for smaller trades and for smaller

(institutional) investors in the market for corporate bonds. Further, Green,

Hollifield, and Schurhoff (2004) and Harris and Piwowar (2004) find that bid-

ask spreads are larger for smaller trades and for more complex instruments

in the market for municipal bonds.

The model that we present here can also be viewed as one of imperfect

competition, for example in specialist-based equity markets. In particular,
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the model shows that even a monopolistic marketmaker may have a tight

bid-ask spread if investors can easily trade directly with each other (that is,

have a high λ). This resembles situations at the New York Stock Exchange

(NYSE) in which, despite a single specialist for each stock, floor brokers can

find and trade among themselves, and outside brokers can find each other

and trade “around” the specialist with limit orders. On Nasdaq, however,

a “phone market” with several dealers for each stock, it can be difficult for

investors to find each other directly. Before the reforms of 1994, 1995, and

1997, it was difficult for investors to compete with Nasdaq marketmakers

through limit orders.24 This may help explain why spreads were higher on

Nasdaq than on NYSE (Huang and Stoll (1996)). Consistent with this view,

Barclay, Christie, Harris, Kandel, and Schultz (1999) find that the “Securities

and Exchange Commission began implementing reforms that would permit

the public to compete directly with Nasdaq dealers by submitting binding

limit orders ... Our results indicate that quoted and effective spreads fell

dramatically.”

The competition faced by marketmakers from direct trade between in-

vestors can perhaps be gauged by the participation rate of marketmakers,

that is, the fraction of trades that are intermediated by a marketmaker. Our
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model suggests that, with equal marketmaker availability and stock charac-

teristics, stocks with higher participation rates are characterized by lower

search intensity (λ) and, hence, higher bid-ask spreads. On Nasdaq, the

participation rate was once large relative to the NYSE, whose participation

rate was between 18.8% and 24.2% in the 1990s (New York Stock Exchange

(2001)). At that time, the NYSE may well have covered stocks whose in-

vestors had higher direct contact rates (λ) than those covered, on average,

by Nasdaq.

Our modeled counterparty search times can proxy, in practice, also for

delays necessary for counterparties to verify one another’s credit standing

and to arrange for trade authorization and financing, or for the time nec-

essary to familiarize an investor with a product type or contractual terms.

Even in an OTC market as liquid as that of U.S. Treasuries, delays necessary

to contact suitable counterparties are frequently responsible for meaningful

price effects, for example as documented by Krishnamurthy (2002). Duffie,

Gârleanu, and Pedersen (2003) provide additional discussion of the empirical

relevance of search for asset pricing behavior.

40



Graduate School of Business, Stanford University, Stanford, CA 94305-

5015, email: duffie@stanford.edu,

Wharton School, University of Pennsylvania, 3620 Locust Walk, Philadel-

phia, PA 19104-6367, email garleanu@wharton.upenn.edu,

and

Stern School of Business, New York University, 44 West Fourth Street,

Suite 9-190, New York, NY 10012-1126, email: lpederse@stern.nyu.edu.

41



APPENDIX: PROOFS

Proof of Proposition 1: Start by letting

y =
λu

λu + λd

,

and assume that y > s. The case y ≤ s can be treated analogously. Setting

the right-hand side of Equation (3) to zero and substituting all components

of µ other than µlo in terms of µlo from Equations (1) and (2) and from

µlo + µln = λd(λd + λu)
−1 = 1 − y, we obtain the quadratic equation

(A.1) Q(µlo) = 0,

where

(A.2) Q(x) = 2λx2 + (2λ(y − s) + ρ + λu + λd)x − λds.

It is immediate that Q has a negative root (since Q(0) < 0) and has a root

in the interval (0, 1) (since Q(1) > 0).

Since µlo is the largest and positive root of a quadratic with positive

leading coefficient and with a negative root, in order to show that µlo < η
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for some η > 0 it suffices to show that Q(η) > 0. Thus, in order that µho > 0

(for, clearly, µho < 1), it is sufficient that Q(s) > 0, which is true, since

Q(s) = 2λs2 + (λu + 2λ(y − s) + ρ)s.

Similarly, µln > 0 if Q(1 − y) > 0, which holds because

Q(1 − y) = 2λ(1 − y)2 + (2λ(y − s) + ρ) (1 − y) + λd(1 − s).

Finally, since µhn = y − s + µlo, it is immediate that µhn > 0.

We present a sketch of a proof of the claim that, from any admissible

initial condition µ(0) the system converges to the steady-state µ.

Because of the two restrictions (1) and (2), the system is reduced to two

equations, which can be thought of as equations in the unknowns µlo(t) and

µl(t), where µl(t) = µlo(t) + µln(t). The equation for µl(t) does not depend

on µlo(t), and admits the simple solution:

µl(t) = µl(0)e−(λd+λu)t +
λd

(λd + λu)
(1 − e−(λd+λu)t).

43



Define the function

G(w, x) = −2λx2− (λu +λd +2λ(1−s−w)+ρ)x+ρ max{0, s+w−1}+λds

and note that µlo satisfies

µ̇lo(t) = G(µl(t), µlo(t)).

The claim is proved by the steps:

1. Choose t1 high enough that s+µl(t)−1 does not change sign for t > t1.

2. Show that µlo(t) stays in (0, 1) for all t, by verifying that G(w, 0) > 0

and G(w, 1) < 0.

3. Choose t2 (≥ t1) high enough that µl(t) changes by at most an arbi-

trarily chosen ǫ > 0 for t > t2.

4. Note that, for any value µlo(t2) ∈ (0, 1), the equation

(A.3) ẋ(t) = G(w, x(t))

with boundary condition x(t2) = µlo(t2) admits a solution that converges

exponentially, as t → ∞, to a positive quantity that can be written as (−b+
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√
b2 + c), where b and c are affine functions of w. The convergence is uniform

in µlo(t2).

5. Finally, using a comparison theorem (for instance, see Birkhoff and

Rota (1969), page 25), µlo(t) is bounded by the solutions to (A.3) corre-

sponding to w taking the highest and lowest values of µl(t) for t > t2 (these

are, of course, µl(t2) and limt→∞ µh(t)). By virtue of the previous step, for

high enough t, these solutions are within O(ǫ) of the steady-state solution

µlo.

Q.E.D.

Proof of Theorem 2: In order to calculate Vσ and P , we consider a partic-

ular agent and a particular time t, let τl denote the next (stopping) time at

which that agent’s intrinsic type changes, let τi denote the next (stopping)

time at another investor with gain from trade is met, τm the next time a
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marketmaker is met, and let τ = min{τl, τi, τm}. Then,

Vlo = Et

[ ∫ τ

t

e−r(u−t)(1 − δ) du + e−r(τl−t)Vho1{τl=τ}

+ e−r(τi−t) (Vln + P ) 1{τi=τ}

+ e−r(τm−t) (Vln + B) 1{τm=τ}

]

Vln = Et

[

e−r(τl−t)Vhn

]

(A.4)

Vho = Et

[∫ τl

t

e−r(u−t) du + e−r(τl−t)Vlo

]

Vhn = Et

[

e−r(τl−t)Vln1{τl=τ} + e−r(τi−t) (Vho − P ) 1{τi=τ}

+e−r(τm−t) (Vho − A) 1{τm=τ}

]

,

where Et denotes expectation conditional on the information available at

time t. Differentiating both sides of Equation (A.4) with respect to t, we get

(10).

In steady-state, V̇σ = 0 and hence (10) implies the following equations for

46



the value functions and prices:

Vlo =
(λuVho + 2λµhnP + ρB + (2λµhn + ρ)Vln + 1 − δ)

r + λu + 2λµhn + ρ

Vln =
λuVhn

r + λu

(A.5)

Vho =
(λdVlo + 1)

r + λd

Vhn =
(λdVln + (2λµlo + ρ)Vho − 2λµloP − ρA)

r + λd + 2λµlo + ρ

(We note that agents on the “long side” of market are rationed when they

interact with the marketmaker, and, therefore, their trading intensity with

the marketmaker is less than ρ. This does not affect (A.5), however, because

the price is the reservation value.) Define ∆Vl = Vlo−Vln and ∆Vh = Vho−Vhn

to be the reservation values. With this notation, the prices are determined

by

P = ∆Vl(1 − q) + ∆Vhq

A = ∆Vhz + M(1 − z)(A.6)

B = ∆Vlz + M(1 − z)

M =















∆Vh if s < λu

λu+λd

∆Vl if s > λu

λu+λd
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and M ∈ [∆Vl, ∆Vh] if s = λu

λu+λd
. Let

ψd = λd + 2λµlo(1 − q) + (1 − q̃)ρ(1 − z)

ψu = λu + 2λµhnq + q̃ρ(1 − z) ,

where

q̃































= 1 if s < λu

λu+λd

= 0 if s > λu

λu+λd

∈ [0, 1] if s = λu

λu+λd
.

With this notation, we see that appropriate linear combinations of (A.5)–

(A.6) yield









r + ψu −ψu

−ψd r + ψd

















∆Vl

∆Vh









=









1 − δ

1









.

Consequently,









∆Vl

∆Vh









=
1

r









1

1









− δ

r

1

r + ψu + ψd









r + ψd

ψd









,(A.7)

which leads to the price formula stated by the theorem. Note also that
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∆Vl < ∆Vh.

Finally, we need to verify that any agent prefers, at any time, given all

information, to play the proposed equilibrium trading strategy, assuming

that other agents do. It is enough to show that an agent agrees to trade at

the candidate equilibrium prices when contacted by an investor with whom

there are potential gains from trade.

The Bellman principle for an agent of type lo in contact with an agent of

type hn, is

P + Vln ≥ Et

[ ∫ τ

t

e−r(u−t)(1 − δ) du + e−r(τl−t)Vho1{τl=τ}

+ e−r(τi−t) (Vln + P ) 1{τi=τ}

+ e−r(τm−t) (Vln + B) 1{τm=τ}

]

,

where τ = min{τl, τi, τm}. This inequality follows from that fact that ∆Vh ≥

P ≥ ∆Vl, which means that selling the asset, consuming the price, and

attaining the candidate value of a non-owner with low valuation, dominates

(at least weakly) the value of keeping the asset, consuming its dividends and

collecting the discounted expected candidate value achieved at the next time

τm of a trading opportunity or at the next time τr of a change to a low
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discount rate, whichever comes first. There is a like Bellman inequality for

an agent of type hn.

Now, to verify the sufficiency of the Bellman equations for individual

optimality, consider any initial agent type σ(0), and any feasible trading

strategy, θ, an adapted process whose value is 1 whenever the agent owns

the asset and 0 whenever the agent does not own the asset. The associated

type process σθ and a wealth process of W = 0 (which can be made without

loss of generality) determine a cumulative consumption process Cθ satisfying

(A.8) dCθ
t = θt

(

1 − δ1{σθ(t)= lo}

)

dt − P̂ dθt.

Following the usual verification argument for stochastic-control, for any

future meeting time τm, m ∈ N, we have

Vσ(0) ≥ E

[∫ τm

0

e−rt dCθ
t

]

+ E
[

e−rτm

Vσθ(τm)

]

.

(This assumes without loss of generality that a potential trading contact does

not occur at time 0.) Letting m go to ∞, we have Vσ(0) ≥ U(Cθ). Because

Vσ(0) = U(C∗), where C∗ is the consumption process associated with the

candidate equilibrium strategy, we have shown optimality. Q.E.D.
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Proof of Theorem 3: The convergence of the masses µ to µ∗ is easily

seen using (A.1), whether λ or ρ tends to infinity. Let us concentrate on the

prices.

1. If s < λu/(λu +λd), then we see using (A.1) that λµhn tends to infinity

with λ, while λµlo is bounded. Hence, Equation (A.7) shows that both ∆Vl

and ∆Vh tend to r−1, provided that q > 0. If s > λu/(λu + λd), λµlo tends

to infinity with λ, while λµhn is bounded. Hence, ∆Vl and ∆Vh tend to

r−1(1− δ), provided that q < 1. If s = λu/(λu + λd), then λµhn = λµlo tends

to infinity with λ, and ∆Vl and ∆Vh tend to r−1(1− δ(1− q)). In each case,

the reservation values converge to the same value, which is a Walrasian price.

2. Equation (A.7) shows that both ∆Vl and ∆Vh tend to the Walrasian

price r−1(1 − δ(1 − q̃)) as ρ approaches infinity.

3. When z = 1, Ak−Bk increases with ρ because A−B = δ(r+ψu+ψd)
−1

and both ψu and ψd decrease, since µlo and µhn do. Q.E.D.

Proof of Theorem 4: Let the value function of a sophisticated type-σ in-

vestor be V s
σ , and the value function of an unsophisticated type-σ investor be

V u
σ . These value functions and the prices (As, Bs, Au, Bu) are computed as

in (A.5)–(A.6), with the modification that the inter-dealer price M is differ-

ent. For any fixed inter-dealer price M , an agent who meets the marketmaker
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with intensity ρ, and who sells as a lo type and buys as a hn type (i.e. with

∆Vl ≤ M ≤ ∆Vh) has value functions determined by

Vho(r + λd) = 1 + λdVlo

Vhn(r + λd + ρ) = λdVln + ρ(Vho − [z∆Vh + (1 − z)M ])

Vln(r + λu) = λuVhn

Vlo(r + λu + ρ) = 1 − δ + λuVho + ρ(Vln + [z∆Vl + (1 − z)M ]).

The system reduces to

∆Vh(r + λd + ρ(1 − z)) = 1 + λd∆Vl + ρ(1 − z)M

∆Vl(r + λu + ρ(1 − z)) = 1 − δ + λu∆Vh + ρ(1 − z)M,

which implies that









∆Vl

∆Vh









=
1 + ρ(1 − z)M

r + ρ(1 − z)









1

1









(A.9)

− δ

r + ρ(1 − z)

1

r + λu + λd + ρ(1 − z)









r + λd + ρ(1 − z)

λd









.
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Hence, this agent faces a bid-ask spread of

z(∆Vh − ∆Vl) =
zδ

r + λu + λd + ρ(1 − z)
.

We show below, for each case, that M is given by

M =















































∆V s
h if s < µs λu

λu+λd

∆V u
h if µs λu

λu+λd
< s < λu

λu+λd

∆V u
l if λu

λu+λd
< s < 1 − µs λd

λu+λd

∆V s
l if 1 − µs λd

λu+λd
< s.

(A.10)

Case (a). Consider first the case of s < µsλu/(λu + λd). The claim is

that it is an equilibrium that the unsophisticated investors own no assets.

Assuming this to be true, the market has only sophisticated investors, the

interdealer price is M = ∆V s
h , and the buyers are rationed.

It remains to be shown that, with this interdealer price, there is no

price at which marketmakers will sell and unsophisticated investors will buy.

First, we note that the optimal response of an investor to the Markov (time-

independent) investment problem can be chosen to be Markov, which means

that one only needs to check the payoffs from Markov strategies that stipu-

late the same probability of trade for a given type at any time. The linearity
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of the problem further allows one to assume that the trading probability is

1 or zero. (When indifferent, the choice does not matter, so we may assume

a corner solution.)

There are three possible Markov strategies for the unsophisticated in-

vestor that involve buying: buying as type h and selling as type l, buying as

type l and selling as type h, and buying and holding (never selling).

If the unsophisticated investor buys as an h type and sells as an l type,

then her value function satisfies (A.9), implying that ∆V u
h < ∆V s

h = M since

ρu < ρs. The reservation values are even lower if she buys as an l and sells as

an h type. Finally, if the unsophisticated investor buys and never sells, then

her value function is also smaller than M . This is inconsistent with trading

with the marketmaker, meaning that she never buys.

Case (b). For the case µs
h < s < µh, the equilibrium is given by an inter-

dealer price of Au = M = ∆V u
h = A(ρu). This is also the price at which

unsophisticated hn-agents buy from the marketmaker, and these agents are

rationed. The sophisticated types hold a total µs
h = µsλu/(λu + λd) of the

supply, while the unsophisticated types hold the rest. This is clearly an

equilibrium for the unsophisticated types. We must ensure that sophisticated

types also behave optimally. In particular, we must check that ∆V s
l ≤ M ≤
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∆V s
h . For this, we use (A.7) and (A.9). We have ∆V s

l ≤ M ⇔ if and only if

1 + ρs(1 − z)M

r + ρs(1 − z)
− δ(r + λd + ρs(1 − z))

r + ρs(1 − z)

1

r + λu + λd + ρs(1 − z)
≤ M,

which holds if and only if

r + λd + ρs(1 − z)

r + λu + λd + ρs(1 − z)
≥ λd

r + λu + λd + ρu(1 − z)
,

which holds because ρs ≥ ρu. Similarly, it can be verified that M ≤ ∆V s
h

using the same formulae.

Case (c). The remaining two cases are dual to those just treated. In order

to see this, take the following new perspective of an agent’s problem: An

agent considers “acquiring” non-ownership (that is, selling). The number

of “shares” of non-ownership is 1 − s. If an l-type acquires non-ownership

then he gets a “dividend” of −(1 − δ) (that is, he gives up a dividend of

1 − δ). If a h-type acquires non-ownership then he gets a “dividend” of −1.

Said differently, he gets a dividend of −(1 − δ) like that of the l-type, and,

additionally, he has a cost of δ. Hence, from this perspective h and l types

are reversed, and the supply of “shares” is 1 − s.
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This explains why the equilibria in the latter two cases are the mirror

images of the equilibria in the former two cases. In particular, if λu

λu+λd
<

s < 1−µs λd

λu+λd
, then both sophisticated and unsophisticated investors trade,

and the unsophisticated l type is rationed.

If 1 − µs λd

λu+λd
< s, each unsophisticated investor owns a share and does

not trade. (Using the alternative perspective, they are out of the market

for non-ownership). The sophisticated investors hold the remaining (1− µs)

shares, they trade, and the selling sophisticated investors are rationed.

Q.E.D.

Proof of Theorem 5:

There exists a number ρM that maximizes (19) since πM is continuous

and πM(ρ) → −∞ as ρ → ∞. We are looking for some ρC ≥ 0 such that

(A.11) Γ′(ρC) = rE

∫ ∞

0

µm(ρC)(A(ρC) − B(ρC))e−rt dt.

Consider how both the left-hand and right-hand sides depend on ρ. The

left-hand side is 0 for ρ = 0, increasing, and tends to infinity as ρ tends to

infinity. For z = 0, A(t, ρ) − B(t, ρ) = 0 everywhere, so the the right-hand

side (RHS) is zero, and, therefore, the unique solution to (A.11) is clearly

ρC = 0. For z > 1, the RHS is strictly positive for ρ = 0. Further, the
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steady-state value of the RHS can be seen to be decreasing, using the fact

that µm is decreasing in ρ, and using the explicit expression for the spread

provided by (A.7). Further, by continuity and still using (A.7), there is ε > 0

and T such that ∂
∂ρ

µm(A − B) < −ε for all t > T and all r. Further, note

that t 7→ re−rt is a probability density function for any r > 0, and that the

closer is r to zero, the more weight is given to high values of t (that is, the

more important is the steady-state value for the integral). Therefore, the

RHS is also decreasing in ρ for any initial condition on µ if r is small enough.

These results yield the existence of a unique solution.

To see that ρC > ρM when z = 1, consider the first-order conditions that

determine ρM :

Γ′(ρM) = rE

∫ ∞

0

[

µm(t, ρM)(A(t, ρM) − B(t, ρM))(A.12)

+ρM ∂

∂ρM

(

µm(t, ρM)(A(t, ρM) − B(t, ρM))
)

]

e−rt dt.

The integral of the first integrand term on the right-hand side of (A.12) is

the same as that of (A.11), and that of the second is negative for small r.

Hence, the right-hand side of (A.12) is smaller than the right-hand side of

(A.11), implying that ρC(1) > ρM .

To see that ρC(z) is increasing in z, we use the Implicit Function Theorem
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and the dominated convergence theorem to compute the derivative of ρC(z)

with respect to z, as

rE
∫ ∞

0
µm(ρC)(Az(ρ

C , z) − Bz(ρ
C , z))e−rt dt

Γ′′(ρC) − rE
∫ ∞

0
d
dρ

µm(ρC)(A(ρC , z) − B(ρC , z))e−rt dt
.(A.13)

If we use the steady-state expressions for µ, A, and B, this expression is seen

to be positive because both the denominator and the numerator are positive.

Hence, it is also positive with any initial masses if we choose r small enough.

Q.E.D.

Proof of Theorem 6: (i) The first part of the theorem, that the monopolis-

tic marketmaker’s search intensity does not affect investors when they can’t

search for each other, follows from (A.5), which shows that investor’s utility

is independent of ρ.

(ii) We want to prove that the investor welfare is decreasing in ρ, which

directly implies that the marketmaker over-invests in intermediation services.

We introduce the notation ∆Vo = Vho − Vlo, ∆Vn = Vhn − Vln, and φ =

∆Vh −∆Vl = ∆Vo −∆Vn, and start by proving a few general facts about the

marketmaker spread, φ.
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The dynamics of φ are given by the ordinary differential equation (ODE)

φ̇t = (r + λd + λu + 2λ(1 − q)µlo + 2λqµhn)φt − δ,

Let R = r + λd + λu + 2λ(1 − q)µlo + 2λqµhn. The equation above readily

implies that

∂φ̇t

∂ρ
= R

∂φt

∂ρ
+

(

2λ(1 − q)
∂µlo(t)

∂ρ
+ 2λq

∂µhn(t)

∂ρ

)

φt.(A.14)

This can be viewed an ODE in the function ∂φ
∂ρ

by treating φt as a fixed

function. It can be verified that 0 < ∂φ
∂ρ

< ∞ in the limit as t → ∞,

that is, in steady state. Further, a simple comparison argument yields that

∂µlo(t)
∂ρ

= ∂µhn(t)
∂ρ

< 0. Hence, the solution to the linear ODE (A.14) is positive

since

∂φt

∂ρ
= −

∫ ∞

t

e−R(u−t)

(

2λ(1 − q)
∂µlo(u)

∂ρ
+ 2λq

∂µhn(u)

∂ρ

)

φu du > 0.

Consider now the case q = 1, for which, since Vhn = Vln = 0,

V̇ho(t) = rVho(t) + λdφt − 1 .
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Differentiating both sides with respect to ρ and using arguments as above,

we see that ∂Vho(t)
∂ρ

< 0 since ∂φt

∂ρ
> 0. Consequently, Vlo(t) = Vho(t) − φt also

decreases in ρ.

If q = 0, then (A.5) shows that Vlo and Vho are independent of ρ. Further,

V̇ln(t) = rVln(t) + λu(φt − ∆Vo(t)).

As above, we differentiate with respect to ρ and conclude that Vln(t) decreases

in ρ since ∂φt

∂ρ
> 0 and ∆Vo(t) is independent of ρ. Consequently, Vhn(t) =

Vln(t) − φt + ∆Vo(t) also decreases in ρ. Q.E.D.

Proof of Theorem 7:

To see that zI > 0, we note that with ρ = ρC(z),

d

dz
wI

∣

∣

z=0 = −δE

∫ ∞

0

d

dρ
µlo(t, ρ)e−rt dt

dρC

dz
> 0,

where we have used that ρC(0) = 0, that dρC

dz
> 0 at z = 0 (see (A.13)), that

A − B = 0 if z = 0, and that for all t, d
dρ

µlo(t, ρ) < 0.

To prove that zI < zS ≤ zM = 1, it suffices to show that the marketmaker
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welfare is increasing in z, which follows from

d

dz
wM = ρ

d

dz

[

E

∫ ∞

0

µlo(a − b)e−rt dt

]

=
ρ

r

d

dz
Γ′(ρC(z))

=
ρ

r
Γ′′(ρC(z))

dρC

dz
> 0,

suppressing the arguments t and ρ from the notation, where we have used

twice the fact that Γ′(ρ) = rE
∫ ∞

0
µlo(A − B)e−rt dt if ρ = ρC(z), and that

dρC

dz
> 0 (Theorem 5). Q.E.D.
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Duffie, D., N. Gârleanu, and L. H. Pedersen (2003): “Valuation in
Over-the-Counter Markets,” Graduate School of Business, Stanford Uni-
versity.

Duffie, D., and Y. Sun (2004): “The Exact Law of Large Numbers
for Pairwise Random Matching,” Unpublished working paper. Graduate
School of Business, Stanford University.

62



Ferland, R., and G. Giroux (2002): “Une approche probabiliste
des marchés dynamiques, I,” Unpublished working paper. Université du
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Notes

1Our model differs from Diamond (1982), and the labor literature more

generally, by considering repeated trade of long-lived assets. The monetary

search literature (for example, Kiyotaki and Wright (1993)) also considers

long-lived assets, but, with the exception of Trejos and Wright (1995), it

considers exogenous prices. Our model has similarities with that of Trejos

and Wright (1995), but their objectives are different and they do not study

marketmaking. See also Harris (1979).

2We show that our model specializes in a specific way to the standard

general-equilibrium paradigm as bilateral trade becomes increasingly active,

under conditions to be described, extending a chain of results by Rubinstein

and Wolinsky (1985), Gale (1987), Gale (1986a), Gale (1986b), and McLen-

nan and Sonnenschein (1991), in a manner explained later in our paper.

Thus, “standard” asset-pricing theory is not excluded, but rather is found at

the end of the spectrum of increasingly “active” markets.

3We note that, when comparing across markets, inventory considerations

may have the same bid-ask implication as our search model, because more
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frequent meetings between investors and marketmakers may result in lower

inventory costs.

4See also Bhattacharya and Hagerty (1987) who introduce dealers into the

Diamond (1982) model, and Moresi (1991) who considers intermediation in

a search model in which buyers and sellers exit the market after they trade.

5Studying endogenous search in labor markets, Mortensen (1982) and Ho-

sios (1990) find that agents may choose inefficient search levels because they

do not internalize the gains from trade realized by future trading partners.

Moen (1997) shows that search markets can be efficient under certain condi-

tions.

6Duffie, Gârleanu, and Pedersen (2003) explore this interpretation in an

extension with risk aversion.

7Dai and Rydqvist (2003) provide a tax example with potential search

effects.

8The assumed almost-sure meeting rate of 2λµCµD is the limit meeting

rate of an associated discrete-time finite-agent random search model. Ferland

and Giroux (2002) prove a more general version of this assertion rigourously.
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Here is a sketch of the proof in our setting. Suppose that market (n, ∆)

has n agents, for whom, given any pair (i, j) of distinct agents, agent i

contacts agent j over a discrete time period of length ∆ with probability

p(n, ∆) = 1− e−∆λ/n (the probability of an arrival of a Poisson process with

intensity λ/n). Suppose that the indicator 1i,j of successful contact of j by i

is independent across all distinct pairs (i, j) of distinct agents. The mean rate

of contact per unit of time of a specific investor with other investors in the

(n, ∆)-market is E(∆−1
∑

j 6=i 1i,j) = ∆−1(n−1)p(n, ∆), which converges to λ,

as in our continuous-time model, as (n, ∆) → (+∞, 0). The per-capita total

rate of contact per unit of time by a subset C(n) ⊂ {1, . . . , n} containing a

fraction µC of the total population with a disjoint subset D(n) containing a

fraction µD of the population is

S(n, ∆) =
1

n∆







∑

i∈C(n)
j∈D(n)

1ij +
∑

i∈D(n)
j∈C(n)

1ij






,

which has mean (n∆)−12p(n, ∆)|C(n)| · |D(n)|, converging to 2λµCµD as

(n, ∆) → (+∞, 0). By the weak law of large numbers (Theorem 6.2 of

Billingsley (1986)), S(n, ∆) converges in probability as (n, ∆) → (+∞, 0) to

its expectation, 2λµCµD, given that S(n, ∆) is the sum of a divergent number
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of independent variables whose total variance is shrinking to zero. One caveat

is that, in a discrete-time model, an agent can contact more than one other

agent at the same time. In that case, an elimination rule can be used to keep

only one-to-one matches, but since the probability of contacting more than

one agent during a period of length ∆ is of the order ∆2, the meeting rate is

as derived above. (The same result holds in the limit even if C(n) and D(n)

are not disjoint, but one must make slight (order 1/n) adjustments to the

mean of S(n, ∆) for overlap in the two groups.)

9 It would be equivalent to have a mass k of dealers with contact intensity

ρ/k, for any k > 0.

10In general, bargaining leads to instant trade when agents do not have

asymmetric information. Otherwise there can be strategic delay. In our

model, it does not matter whether agents have private information about

their own type for it is common knowledge that a gain from trade arises only

between between agents of types lo and hn.

11For example, the transition intensity from state lo to state ho is λu, the

transition intensity from state lo to state ln is 2λµhn, and so on, for the 4×3

switching intensities.
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12This is a result of the law of large numbers, in the form of Theorem

C of Sun (2000), which provides the construction of our probability space

(Ω,F , P r) and agent space [0, 1], with an appropriate σ-algebra making Ω×

[0, 1] into what Sun calls a “rich space,” with the properties that: (i) for each

individual agent in [0, 1], the agent’s type process is indeed a Markov chain in

T with the specified generator, (ii) the unconditional probability distribution

of the agents’ type is always the steady-state distribution µ on T given by

Proposition 1, (iii) agents’ type transitions are almost everywhere pair-wise

independent, and (iv) the cross-sectional distribution of types is also given

by µ, almost surely, at each time t.

13V is well defined if lims→∞ Et[e
−rs max{Ps, As, Bs}] = 0. We restrict

attention to such prices.

14 Duffie, Gârleanu, and Pedersen (2003) describe an alternating-offer bar-

gaining procedure yielding a bargaining power that, in the limit as the time

between offers approaches zero, is equal to the probability of making an offer.

Our qualitative results do not, however, depend on zero time between offers.

For example, the results in Section 4 concerning λ → ∞ hold for an arbitrary

delay between offers.
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15 In our model, a marketmaker’s profit is not affected by any one in-

finitesimal trade. Further, Board and Zwiebel (2003) show that if agents bid

resources for the right to make an offer, one agent much richer than another

endogenously receives the entire bargaining power.

16The quantity of such agents can be thought, for instance, as the capacity

for taking a certain kind of risk.

17 This result holds, under certain conditions, even if the monopolistic

marketmaker can be approached instantly (“ρ = +∞”). In this case, for

any finite λ, all trades are done using the marketmaker, but as the investors’

outside options improve, even a monopolistic marketmaker needs to quote

competitive prices.

18Gale (1986a), Gale (1986b), and McLennan and Sonnenschein (1991)

show that a bargaining game implements Walrasian outcomes in the limiting

case with no frictions (that is, no discounting) in much richer settings for

preferences and goods. See also Binmore and Herrero (1988).

19 Other important differences between our framework and that of Ru-

binstein and Wolinsky (1985) are that we accommodate repeated trade, and

that we diminish search frictions explicitly through λ rather than implicitly
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through the discount rate. See Bester (1988, 1989) for the importance of

diminishing search frictions directly.

20Related to this, Pagano (1989) considers a one-period model in which

investors choose between searching for a counterparty and trading on a cen-

tralized market.

21If the monopolist’s bargaining power is z < 1, it still holds that ρC(z) >

ρM(z).

22This “utilitarian” social welfare function can be justified by considering

the utility of an agent “behind the veil of ignorance,” not knowing what type

of agent he will become.

23 If 0 < q < 1, then increasing ρ has the additional effect of changing the

relative strength of investors’ bargaining positions with the marketmaker,

because it changes their outside options, which complicates the calculations.

24 See Barclay, Christie, Harris, Kandel, and Schultz (1999) and references

therein.
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FIGURE 1

The solid line shows the price P for trades between investors; the dashed lines

show the bid (B) and ask (A) prices applied by marketmakers. The prices are

functions of the intensity (ρ) with which an investor meets a dealer, which is

plotted on a logarithmic scale. The bargaining power z of the marketmaker

is 0.8 in the left panel and 1 in the right panel.
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