
Finance in a Time of Disruptive Growth

Nicolae Gârleanu
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Abstract

We propose a unified theory of asset price determination encompassing both “con-

ventional” and “alternative” asset classes (private equity, real estate, etc.). The model

features disruption of old by young firms and skewness in the distribution of innovative

rents among the young innovators. The relative size of asset classes, the dynamics of

rich investors’ wealth, and the returns of the various asset classes are jointly determined

in equilibrium. Besides explaining the observed patterns of returns across asset classes,

we analyze the theoretical properties of the most widely used performance-evaluation

measure for alternative investments. We also provide connections between the growth

of alternative investments, the dispersion of returns across investors, and the turnover

inside the ranks of wealthy individuals.
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1 Introduction

Entrepreneurial risk and, more broadly, equity participation in non-publicly traded corpo-

rations are many times the origin of spectacular accession to wealth. Indeed, the returns on

private-equity (PE) positions are generally recognized as a leading driver behind the wealth

dynamics of the ultra-rich. In turn, the allure of these returns spurred the remarkable growth

of private equity funds, which have become ever more important over the last four decades.

Furthermore, the quest for alternatives to public equities did not stop at private equities,

but also led to the growth of such asset classes as real estate and commodities.

Despite the increased importance of all these asset classes, there has not been a lot of

work devoted to a unified theoretical understanding of their basic features. In this paper,

we wish to provide answers to such questions as: What determines the equilibrium returns

of these alternative investments and how do they compare to those on public equities? How

should one evaluate the attractiveness of these investments? How does the emergence of this

new investment landscape affect wealth dynamics and the return dispersion among investors?

What can the joint dynamics of the growing investment share in alternative investments, the

dispersion of returns, and the turnover inside the population of rich investors teach us about

the fundamental trends affecting the economy?

We propose a unified theory to address these questions. The model has three key features:

(a) innovation is disruptive and leads to redistribution from existing-firm owners towards

newly arriving innovators, (b) the gains from innovation are extremely skewed and accrue

to a very small fraction of the new innovators, and (c) there is imperfect risk sharing that

does not allow agents to eliminate the impact of these distributional risks on their wealth.

The model is “neoclassical” in that all expected returns reflect exclusively compensation

for risk. However, unlike in representative-agent economies, the notion of risk in our paper

encompasses both aggregate and distributional risks. In particular, these distributional risks

play a central role for the determination of expected returns, the size of the financial industry,

and the wealth dynamics of the ultra-rich.

We next provide more detail on the setup of the model and summarize its implications for

asset pricing and the dynamics of inequality. The backdrop is an infinite-horizon, stochastic,

discrete-time, perpetual-youth, general equilibrium model of creative destruction. A stochas-

tic amount of new blueprints arrives (exogenously) each period and leads to the creation of

new firms. These blueprints raise aggregate production, but also displace the profits of old
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firms. The ownership rights to the arriving blueprints are allocated either to existing pub-

licly traded firms or to newly arriving agents. The allocation of blueprints to new agents

is random and highly skewed. A small number of innovators end up with the profitable

blueprints, while the rest receive trivial allocations. As a result, the newly arrived innova-

tors are eager to share the allocation risk with (old) investors, by offering their firm’s shares

for sale. They are, however, subject to an agency friction that prevents them from selling

their entire firm. The transfer of fractional ownership from new to old investors is facilitated

by financial intermediaries (“private-equity funds”) who purchase a portfolio of the new-firm

shares on behalf of investors. This diversification is limited, in that each intermediary can

only invest in a subset of new firms.

There are therefore two impediments to perfect risk sharing, an inter- and an intra-cohort

impediment. At the inter-cohort level, the fraction of the random endowment retained by

the newly arriving entrepreneurs is larger than zero. At the intra-cohort level, each investor

obtains a different rate of return on their private equity portfolio, depending on the subset

of private firms in which they invest. Inside the model this is the most important difference

between investments in public and private equity: all investors obtain the same return in

their public equities, but their private-equity returns are dispersed. In the next section, where

we summarize some empirical facts underpinning the model, we show that this difference in

dispersion is a property of the data. At a theoretical level, an attractive feature of the model

is that it captures as special cases the essence of several models in the literature, including the

perfect risk-sharing limit (Rubinstein (1976), Lucas (1978)), the Constantinides and Duffie

(1996) model, and the OLG model of Gârleanu et al. (2012).

The key implications of the model can be summarized as follows. First, the model pro-

vides a unified, risk-based explanation of the returns obtained in conventional and alternative

asset classes. This is not a straightforward task, because some cross-sectional patterns in the

public-equity market appear inconsistent with private-equity markets: On the one hand the

value premium requires that the “growth options” embedded in the price of publicly traded

growth firms command a comparatively low risk premium. On the other hand, this expla-

nation of the value premium would also seem to imply that investments in venture-capital

funds, which are presumably growth-option intensive, should consistently underperform any

portfolio of public equities. The intuition is that these dynamic, new firms will displace some

of the older, established firms at some point. Accordingly, an investment in new ventures
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should act as a hedge for the stock market, and should command a rate of return lower

than public equities. In the data there is a paucity of such evidence.1 The model recon-

ciles a positive value premium for public equities with a private-equity premium that can be

positive or negative. While the displacement risk of old firms by young firms is a concern

to the investor, she also recognizes that the subset of firms in her private-equity portfolio

might not be among the small subset of new firms that will end up displacing the old firms.

Compared to public equities, investors’ private-equity portfolio returns exhibit substantial

cross-sectional dispersion (both in the model and the data), which implies that some amount

of idiosyncratic risk is retained in these portfolios. Therefore, investments in new ventures

expose the investor to idiosyncratic risk, without necessarily being an effective hedge for

displacement risk.

Second, the model can be used to study the theoretical properties of some popular meth-

ods for “risk-adjusting” and evaluating the “outperformance” of private equity investments.

Most popular among those approaches is the public market equivalent approach (PME) of

Kaplan and Schoar (2005), which involves discounting private equity cashflows by the cu-

mulative returns of the stock market and then dividing the sum of the discounted values by

the amount invested. Values above one are interpreted as an indication of risk-adjusted out-

performance. We show that the expected value of the PME must exceed unity, even under

the assumptions that the literature identifies as most favorable for the validity of the PME

(in particular, unitary risk aversion). The fact that the expected value of the PME is above

one (even in the absence of any outperformance) is actually quite general and independent

of the specifics of the model. The core intuition involves the fact that the public equity, used

as discount factor, does not fully capture a marginal investor’s portfolio risk.

Third, the model predicts that asset classes that are immune to displacement, such as

commodities or real estate, should have lower expected returns than either public or private

equities. The reason is that the profits of such factors of production are not tied to a specific

blueprint, but are useful to all blueprints, young and old alike. By being useful to all firms,

they are not affected by the distributional shocks that impact either publicly traded or

private equity. In that sense, these asset classes are effective hedges against displacement

1While there is disagreement in the empirical literature whether the “alpha” of venture capital returns
(regressed on the market portfolio) is statistically different from zero or positive, there is no obvious evidence
that this alpha is significantly negative. At an even more basic level, if the returns of venture capital are
compared to the returns of similar firms in the public equity market (for instance the returns of the “small
growth” portfolio), venture capital returns are on average higher.
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risk and command a low risk premium. This ranking of expected returns of commodities and

real estate at the bottom followed by growth stocks, value stocks, and private equity seems

consistent with the performance of these asset classes over the past couple of decades.2

Fourth, the same key feature of the model that drives its asset-pricing predictions is also

responsible for its ability to explain some intriguing properties of wealth dynamics. As we

show in the next section, the ultra-rich investors that are added to the Forbes 400 over

every five-year period exhibit a wealth dispersion similar to the investors already in the list.

Phrased differently, new entrants don’t just enter the distribution of the ultra-rich at its

lower ranks, they enter at all ranks. This appears inconsistent with the notion that the

wealth growth of these entrants follows a diffusion process, since then one would expect

the new entrants to replace predominantly the individuals at the lower ranks of the existing

distribution of the rich. Our model can help account for this fact, since the wealth dispersion

among the rich occurs predominantly in the early stages of their accession to wealth. More

broadly, inequality in the model is primarily driven by the churn of rich investors, i.e., the

replacement of old rich by new rich. The old rich don’t exhibit spectacular wealth-growth

rates, as we discuss in greater detail in the next section.

Fifth, the model makes predictions about the joint behavior of (a) aggregate growth,

(b) inequality, (c) asset returns, and (d) the size of the private-equity industry. The joint

nature of these predictions allows one to make qualitative inferences about the type of

fundamental changes affecting the economy at different times. For example, an acceleration

of disruptive activity raises aggregate growth, increases the investment share of private equity,

and also boosts the wealth share of newly-rich entrepreneurs, broadly consistent with the

experience of the late nineties. By contrast, the continued growth of the private-equity

industry after 2000 was accompanied by a more moderate TFP growth, a deceleration in

the rate of displacement of old by new rich, and less dispersed returns for PE investors. The

type of fundamental change that could account for these events inside the model would be

an increased effectiveness of the PE industry, not a broad acceleration of disruption.

Finally, the model makes a technical contribution. Specifically, in modeling the random

endowments of innovators we borrow a construction that is quite popular in non-parametric

Bayesian statistics (and more recently in natural language processing), namely the Gamma-

Dirichlet-process construction. This construction allows us to model random distributions

2 See Mauboussin and Callahan (2020), Exhibit 4, which depicts the performance of various asset classes
from 1984-2015.
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with the property that idiosyncratic risk cannot be easily eliminated, even in large portfolios.

The resulting dispersion of the returns of these portfolios matches quite well the dispersion

we encounter in the data; this return dispersion also allows idiosyncratic risk to be priced in

an entirely neoclassical, arbitrage-free, equilibrium model.

The rest of the paper is structured as follows. In Section 2, we summarize several empirical

facts that motivate the model’s key assumptions and form the targets of our calibration.

Section 3 lays out the model, while Section 4 provides its solution and implications. In

Section 5 we derive the model’s predictions for a wide set of asset classes and value-growth

portfolios, and in Section 6 we calibrate the model and compare its quantitative implications

to the data. Finally, Section 7 concludes.

1.1 Literature review

Our paper relates to several strands of the literature.

Methodologically, the paper belongs to the well-developed literature that uses macroe-

conomic models to price the cross section of returns, and especially the size and value pre-

mium. One of the early contributions to this literature is Gomes et al. (2003), which develops

a general equilibrium version of Berk et al. (1999), while more recent contributions include

Papanikolaou (2011), Gârleanu et al. (2012), Gârleanu et al. (2012), and Kogan et al. (2020).

Opp (2019) presents a tractable, macroeconomic model with venture capital, but focuses on

different issues than we do in this paper. One of the goals of our paper is to extend this

literature to a wider set of asset classes, and provide a resolution to the seemingly inconsis-

tent pricing of growth options across public and private equities. A key role in our paper is

played by creative destruction and “displacement risk,” as in Gârleanu et al. (2012) and Ko-

gan et al. (2020). There is a small literature that studies the impact of entry and imperfect

competition on asset prices. Indicative examples are Loualiche (2021), Corhay et al. (2020),

Dou et al. (2021), and Bena et al. (2015). Gârleanu et al. (2012) can be construed as a

special case of this paper, obtaining if the market for private equity is shut down. Similarly,

relative to Kogan et al. (2020) we introduce a market where entrepreneurs can trade their

equity stakes with existing investors.

The lack of both inter-cohort and intra-cohort risk sharing plays an important role for

the pricing of risk in our paper. There are two large and developed strands of the literature

in asset pricing that pursue the asset-pricing implications of imperfections in both intergen-
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erational3 and intra-generational risk sharing.4 Similar to Constantinides and Duffie (1996),

higher moments of idiosyncratic risk play a key role in our paper. However, we make entirely

different endowment assumptions and allow some limited sharing of these endowment risks

through the private-equity market.5

The (positively) skewed distribution of blueprints plays an important role in our paper.

The skewness of idiosyncratic shocks is also a key element of such papers as Schmidt (2015),

Constantinides and Ghosh (2017), and Ai and Bhandari (2021), except that the emphasis is

on the negative skewness of labor income. Toda and Walsh (2019) and Gomez (2017) focus

on the interaction between inequality and asset returns, similar to this paper.

A distinguishing feature of our model (compared to the literature on risk-sharing imper-

fections) is that we model the financial industry as a vehicle that facilitates transfers both

within and across generations of entrepreneurs (behind the “veil of ignorance” about which

firms are likely to be profitable). Purely from a technical perspective, our approach of mod-

eling the financial industry as a facilitator of risk sharing resembles Gârleanu et al. (2015).

However, the model in the present paper is intertemporal, features lack of both intra- and

inter-cohort risk sharing, the arrival of new blueprints follows an extremely skewed distribu-

tion (a gamma process, as opposed to the Brownian-bridge construction in Gârleanu et al.

(2015)), there is aggregate risk, and the model is amenable to calibration because of the

usage of standard, homothetic utilities.6

The tradability of private equity shares (which is necessary to discuss the model’s asset

pricing implications) is also the main feature that distinguishes our model from the large

number of models of entrepreneurial equity. In those models each entrepreneur invests ex-

clusively in her own firm.7 Even if one allowed selling of shares between investors in that

literature, the normal distribution of idiosyncratic shocks would make idiosyncratic risk ef-

3Indicative examples of asset pricing papers featuring lack of intergenerational risk sharing are Abel
(2003), Krueger and Kubler (2006), Geanakoplos et al. (2004), Campbell and Nosbusch (2007), Storesletten
et al. (2007), Constantinides et al. (2002), Gomes and Michaelides (2005), Gârleanu and Panageas (2015),
Schneider (2022), Maurer (2017), Ehling et al. (2018), Farmer (2018), Gârleanu et al. (2012), Gârleanu and
Panageas (2023), Gârleanu and Panageas (2021).

4The asset prcing literature featuring uninsurable idiosyncratic shocks is vast and we do not attempt to
summarize it here. Panageas (2020) provides a recent survey.

5See Krueger and Lustig (2010) on the importance of endowment assumptions in Constantinides and
Duffie (1996).

6The idea that some investors retain some location-specific risk is reminiscent of Vayanos and Vila (2021),
except that in their specification the analog of a “location” is a bond maturity.

7We don’t attempt to summarize this literature here. An indicative example of an entrepreneurial equity
model is Angeletos (2007). See also Di Tella and Hall (2021) for a more recent contribution.
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fectively vanish through diversification, therefore making private-equity investments have

the same return as public-equity investments.

While the study of inequality is not the primary focus of this paper, our model’s assump-

tions are consistent with some recent studies of wealth inequality. Similar to Gomez (2023),

we emphasize the role of entry, displacement, and churn in top wealth shares. Similar to

Gabaix et al. (2016), we emphasize the importance of positively skewed, jump-like, idiosyn-

cratic shocks, except that in our framework the positive skewness affects predominantly the

entering cohorts. Gouin-Bonenfant et al. (2023) studies the interaction of asset-price deter-

mination and wealth dispersion, and in particular the subsets of the population that are af-

fected by asset price fluctuations. Irie (2024) studies the interaction between entrepreneurial

finance and wealth inequality, but in a framework that does not feature different returns

across asset classes.

Our paper has implications for the evaluation of investments in alternative asset classes.

Our finding that the quite popular PME method of Kaplan and Schoar (2005) has an ex-

pectation larger than one is novel, to the best of our knowledge. The interesting aspect of

this result is that we can sign the direction of the bias, and that the bias obtains despite our

making the most favorable assumptions for the validity of the PME.8 Our model suggests

using an investor’s return as basis for a simple alternative to the PME measure. Korteweg

et al. (2023) implements such an approach.

Our model abstracts from “illiquidity” when valuing alternative asset classes.9 Illiquidity

presents an alternative explanation for the seemingly inconsistent cross-sectional pricing of

growth options across public and private equities. We chose to abstract from considerations

of illiquidity, because (a) we wish to show that, even in the absence of liquidity considerations,

the large cross-sectional dispersion of returns in alternative asset classes is a channel that

can both qualitatively and quantitatively account for the observed PME values and (b) the

absence of liquidity considerations helps us illustrate that the PME evaluation method is

an imperfect risk-adjustment method, since it has an expectation larger than one even in

a world where any excess return is exclusively a reward for risk. We also note that the

illiquidity of alternative asset classes can have ambiguous effects on their prices: While some

8Korteweg and Nagel (2016), Sorensen et al. (2014), Gupta and Van Nieuwerburgh (2021), and Korteweg
et al. (2023) present alternatives to the PME approach. Sorensen and Jagannathan (2015) show that the
PME validity requires the special assumption of logarithmic utilities. Our result is that even with logarithmic
utilities the PME has an expectation larger than one.

9See, e.g., Ang et al. (2014).

7



Figure 1: Return dispersion of the investments of public pension plans in public equity and alternative
asset classes. Left plot: 15-year geometric averages (2003-2018). Right plot: five-year geometric averages
(2013-2018).

investors fear illiquidity, some long-term institutional investors who are subject to regulatory

capital requirements and face convex costs of raising equity may be attracted by the fact

that private equity positions are not subject to mark-to-market requirements. In addition,

during the last decade the market for secondary sales of private equity positions by limited

partners has increased dramatically, which has considerably improved the liquidity in the

market.10

2 Motivating Evidence

Before presenting the model, we briefly highlight three empirical facts to motivate the model

assumptions. We revisit these facts (and provide more details on the data) in Section 6,

when we calibrate the model.

First, we document that the returns of alternative-asset-class investments tend to be

far more dispersed (across investors) than public-equity returns. Second, we show that the

wealth dynamics of new entrants into the population of the ultra-rich appear to exhibit jump-

like features. Third, we document that the wealth dynamics of a fixed cohort of existing rich

10The rapid growth in the market for “secondaries” in the last 10 years has greatly improved the ability
of limited partners to liquidate their private-equity positions. Yet, the PME values have not changed dra-
matically over this period, which suggests that illiquidity is not the primary driver behind the PME values
of private equity. Additionally, the data from secondary transactions shows that discounts (compared to net
asset value, NAV) are generally larger for venture capital investments than for buyout investments; yet the
PME values of buyout funds are generally larger than VC funds. See, e.g., Jefferies (2023).
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Figure 2: Proportion of self-made billionaires entering the Forbes 400 list in any of eight ranked buckets.
The left plot reports results for individuals entering the list during the previous N = 5 years. The right plot
shortens the window, considering entrants over the previous N = 2− 5 years.

investors roughly align with the S&P 500 returns minus 2% per annum.

To establish the first fact, we examine the returns reported by public pension plans

on their public equity and their alternative-asset-class investments. Public pension plans

constitute an attractive source of information, since they are required to file comprehensive

annual financial reports (“CAFR”) about the performance of each of their investments and

are subject to “Freedom of Information Act” (FOIA) requests.11

Figure 1 shows a histogram of the returns obtained by public pension funds on their

public (blue bars) and their alternative (red bars) investments. To mitigate concerns that

our results could be driven by the absence of mark-to-market values for the net asset values

of unrealized exits, we compute a (geometric) average of the returns in both asset classes

over periods of 5 years (right plot) and 15 years (left plot).12

The figure shows that the returns obtained by these large institutional investors on their

public-equities investments is not very dispersed. However, there is substantial dispersion

in the returns that these investors obtain in alternative asset classes. This higher dispersion

is quantitatively large: For 15-year geometric averages, the alternative-asset-class returns

across pension funds can range from 0% to 13.5%. For comparison, the range of values for

public equities is considerably narrower, stretching between 4.7% and 7.3%. In Section 6 we

11The source of the data is “Public Plans Data. 2001-2022,” Center for Retirement Research at Boston
College, MissionSquare Research Institute, National Association of State Retirement Administrators, and
Government Finance Officers Association.

12To avoid that our results are influenced by the Covid years, we report results for the 5-year and 15-year
period ending in 2018. We choose 2018 rather than 2019, because the accounting periods for many pension
plans close mid-year.
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Figure 3: Left panel: Chained wealth growth of the top-200 group of individuals in the Forbes 400 list and
S&P 500 total return. Right panel: Cumulative chained return on wealth to top-200 individuals plus 2%
and S&P 500 total return. To compute wealth growth and return on wealth we divide the average time-t+1
wealth of time-t top-200 individuals still in the Forbes 400 list at time t+ 1 by the average time-t wealth of
all time-t top-200 individuals.

confirm this finding using a different data set that contains information on the internal rates

of return (IRR) of the private-equity investments of each pension plan. Previewing results,

the dispersion of private-equity returns across investors plays an important role in our model

for driving a wedge between the expected return of public and private equity.

Since our model contains implications for the dynamics of the ultra-rich, the second fact

we document pertains to the dynamics of entrants into the Forbes 400 list. Forbes follows

more than one thousand individuals and reports a list of the 400 wealthiest ones each year.

Figure 2 reports a remarkable feature concerning the entry of rich individuals into this list.

The left plot of the figure depicts the empirical distribution of the ranks of these entrants

in the Forbes 400 list upon their entry. Since in our model calibration (Section 6) we use

5-year periods, we consider each of the years t = 1999, . . . , 2013 and identify the new entrants

into the list over the time interval (t− 5, t]. We use only entrants tagged by Forbes as “self

made.” The remarkable feature of Figure 2 for our purposes is the depth of penetration of

new entrants even in the right-most tail of the distribution. The individuals that entered

the top 400 list don’t predominantly occupy the 350-400 ranks, but rather reach even the

high ranks of the distribution of the existing rich. For instance, only 20.5% find themselves

in the 350-400 range, while 22.6% populate the ranks 150 and above. Remarkably, this

penetration of recent entrants into all ranks of the distribution of the ultra-rich does not

change much if we shorten the entry interval to cover only the previous N ∈ {2, . . . , 5}
years (right plot). This depth of penetration motivates the extreme endowment skewness
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assumptions (for entering cohorts) that we make in the model.

The final motivating fact pertains to the average wealth dynamics of the existing rich.

Specifically, the average return obtained by the extremely rich is quite similar to the S&P 500

total return, as illustrated by Figure 3. This figure graphs, with a continuous line, a measure

of return on wealth computed as follows. Every year t, we take the top-200 individuals in

the list and compute their average wealth in year t as well as, for the ones still on the list in

year t+1, their average wealth in year t+1. (We focus on the top 200 to mitigate the effects

of attrition.13) The left plot shows that the wealth growth of the already-rich individuals

is somewhat smaller than the total return of the S&P 500. The right plot shows that the

difference is approximately 2%: If we interpret this 2% as a consumption-to-wealth ratio,

then the figure shows that the pre-consumption aggregate wealth growth of the existing rich

lines up closely with the return of the market portfolio.

Taken together, Figures 2 and 3 motivate the model’s assumption that the rents from

new firm creation are skewed and cause entry into the distribution of the ultra rich by new

entrepreneurs (even into the highest ranks of this distribution). By contrast, the aggregate

wealth growth of the existing rich does not differ substantially from the returns of the assets

already contained in the index.

3 Model

We next present the model. For ease of reference, we compile a list of the definitions of the

main mathematical symbols at the end of paper.

3.1 Agent preferences and demographics

We consider a model with discrete and infinite time: t = {. . . , 0, 1, 2, . . .}. The size of the

population is normalized to one. At each date a mass λ of agents are born, and each pre-

existing agent may die with probability λ, independently of all other agents. Consequently,

a mass λ of agents die and the population remains constant. We denote by Vt,s the time-t

utility of an agent born at time s. Investors have Epstein-Zin-Weil preferences with a unitary

13Since Forbes reports the 400 richest individuals, there is a high likelihood that individuals in the top
200 list in year t will still be in the top 400 list in year t+ 1, so we can observe their wealth. This group of
200 individuals may include more than 200 names, due to ties.
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intertemporal elasticity of substitution and a risk aversion equal to γ:

log Vt,s = (1− β (1− λ)) log ct,s + β (1− λ) logR(Vt+1,s), (1)

where R(x) = (Et[x
1−γ])

1
1−γ . We focus on the empirically relevant case in which the risk

aversion, γ, exceeds one, γ > 1. The subjective discount factor, β, lies in (0, 1). The quantity

ct,s is the agent’s consumption at time t. Since the second term on the right hand side of (1)

depends on the product of β and (1 − λ), it is useful to define β̂ = β(1 − λ) as the agent’s

effective discount factor.14 In the limit case γ = 1 the life-time utility of the agent takes the

simpler form Es

∑∞
t=s β̂

t−s log ct,s.

3.2 Technology

To expedite the presentation of the main results, we follow the common practice in asset

pricing of simply making assumptions on the dynamics of aggregate output, the share of

profits and the share of labor as simple endowments. Appendix B shows how the postulates

of this section can be micro-founded by utilizing a standard “creative destruction” model

featuring production and an expanding variety of “blueprints” for the production of new

intermediate goods.

Specifically, we assume an increasing, stochastic process At of blueprints. Total output,

Yt, increases in the number of blueprints,

Yt = ZtA
1−α
t with α ∈ (0, 1). (2)

The logarithm of the process Zt is a random walk with dynamics ∆ logZt+1 = εt+1, where

εt+1 is normally distributed. A fraction α(1− α) of the output is paid out as profits to the

owners of blueprints. The remaining fraction is paid out as labor income. Accordingly, the

stream of profits, πt, per blueprint is

πt =
α (1− α)Yt

At

= α (1− α)ZtA
−α
t . (3)

Equation (2) shows that output, Yt, is an increasing function of At, while by equation (3)

profits per blueprint, πt, are decreasing in At. This is the sense in which our simple specifi-

14Gârleanu and Panageas (2015), Online Appendix D, discusses recursive utilities with mortality risk and
provides a justification for equation (1), i.e., specifying recursive utility as if investors were infinitely lived,

but with a discount factor equal to β̂ = β(1− λ).
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cation captures the idea of displacement of old blueprints by new ones.

The owners of blueprints create firms that own the profit stream from those blueprints.

Shares of these firms can be traded in financial markets.

3.3 Allocation of blueprints

The measure λ of newly born agents are of two types: a fraction θ are entrepreneurs and a

fraction 1 − θ are workers. Workers collect the labor share of output, 1 − α(1 − α). Since

workers are not the focus of the paper, we assume that they are “hand-to-mouth” consumers,

i.e., they simply consume their endowment and don’t participate in financial markets. This

assumption is not essential for the results, and we relax it in Section 5.4.

The agents who participate in financial markets are the entrepreneurs, whose endowment

takes the form of blueprints. Specifically, each period a total mass

∆At+1 = At+1 − At = ηAtΓt+1 = ηAt

(
ΓN
t+1 + ΓE

t+1 + ΓU
t+1

)
(4)

of new blueprints arrives. The proportional increment ∆At+1

At
is captured by the random

variable ηΓt+1 and consists of three components, ηΓE
t+1, ηΓ

N
t+1, and ηΓU

t+1. Here, Γl
t+1, l ∈

{E,N,U} are independent gamma distributed variables with shape parameters al and rate

parameters bl, and η is a constant. Since we want to focus on the asset-pricing implications

of the model, we simplify matters and assume an exogenous arrival of blueprints, which are

randomly allocated to the agents in the economy. We next specify the allocation of the three

categories of blueprints.

The new blueprints in the amount of ηAtΓ
E
t+1 capture innovation that occurs within

existing firms. Specifically, we assume that the At blueprints of time-t firms increase to

At(1 + ηΓE
t+1) next period.

15

The blueprints ηAtΓ
N
t+1 are the main focus of our analysis. They capture the arrival

of new, private-equity-backed firms. Specifically, these blueprints accrue at time t + 1 to

entrepreneurs born at time t. The crucial aspect for our analysis is that the new blueprints

are allocated randomly to these entrepreneurs. To capture this randomness, we index en-

trepreneurs by a “location” i ∈ [0, 1) on a circle with circumference normalized to one. The

number of blueprints distributed to entrepreneurs in location i is ηAtdΓ
N
i,t+1, where dΓN

i,t+1

15Given our assumptions of frictionless trading of existing firms, the distribution of these blueprints to
existing firms is irrelevant. Since the representative investor holds all existing firms, the stochastic discount
factor is affected only by the total number of blueprints allocated to existing firms, not the distribution.
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denotes the increments of a gamma process, so that the total number of ΓN
t+1 blueprints

is
∫ 1

0
dΓN

i,t+1 = ΓN
t+1. (For technical reasons, we assume that there is a continuum of en-

trepreneurs of mass 1 in each location i sharing equally the blueprints accruing to location

i.16) Since the gamma process is not commonly used in economics, we summarize briefly

some of its properties. To build intuition, we consider a discrete construction. We split the

interval [0, 1) into K equal intervals, and think of the gamma process at the location k
K

as

a sum,
∑k

n=1 ξ n
K
, of gamma-distributed, independent increments ξ n

K
, where the pdf of the

increment ξi is given by the gamma distribution:

Pr(ξi ∈ dx) =
b

a
K

Γ
(

a
K

)x a
K
−1e−bx dx. (5)

The parameters a
K

and b are sometimes refered to as the shape and the rate of the gamma

distribution, and Γ(·) is the gamma function. The increments ξi are indepenent of each

other, and the properties of the gamma distribution imply

Pr

(
K∑

n=1

ξ n
K
∈ dx

)
=

ba

Γ (a)
xa−1e−bx dx, (6)

which is the distribution of a gamma variable with shape a and rate b. In short, the gamma

process exploits the “infinite divisibility” of gamma distributions.17

Using the gamma process is technically attractive for our purposes, since it captures in

a stylized way the notion that entrepreneurship is very risky. This is illustrated in the left

plot of Figure 4. The figure shows a sample of increments ξi for the case where the interval

[0, 1] is split into K = 1000 subintervals. The figure illustrates that only a small and random

subset of locations exhibit big spikes (of random height), while in all other locations the

increments are so small that they are not even visible in the plot. From an economic point

of view, this means that only the lucky few entrepreneurs, who happen to find themselves

in the locations exhibiting the large spikes, obtain a non-trivial allocation of blueprints.

The limit of the sum
∑k

n=1 ξ n
K

as the number of locations K goes to infinity is a gamma

process. It is a positive and increasing process, whose paths are nowhere continuous (they

are, however, right continuous with left limits). The process increases on a measure-zero, but

16This assumption ensures price-taking behavior, the ability of annuity companies to break even by an
appropriate law of large numbers, etc.

17The right-hand side of (6) does not depend on the number of partitions, K. This illustrates the property
of infinite divisibility.
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Figure 4: Left plot: An illustration of the increments ξi, for the case K = 1000, a = 15, and b = 2. Right
plot: An illustration of how private equity funds help with risk sharing, when ∆ = 0.4. The private equity
fund in position 0.5 provides an equal weighted portfolio of the increments in [0.3, 07]. The private equity
fund in location 0 averages the increments in [0, 0.2] ∪ [0.8, 1).

dense, subset of the interval [0, 1). This implies that even though the process increases over

any given subinterval of [0, 1), most increments are small.18 However, a countable measure

of locations receive a non-trivial allocation of blueprints, and the entrepreneurs who find

themselves in these locations become quite wealthy.19

Before proceeding, we would like to note that this extreme-inequality setup is mostly for

illustrative purposes and technical convenience. Less extreme distributions would preserve

the economic insights, assuming a sufficiently strong notion of distributional risk.

A crucial assumption is that no agent knows at time t the realization of the path of

the gamma process ΓN
t+1 at time t + 1. In other words, no one knows which locations will

receive a non-trivial endowment of blueprints. Because of this uncertainty, entrepreneurs

are approached by “private-equity funds” at time t. (We choose the broader term “private-

equity funds” rather than “VC funds” for reasons that we explain in Section 5.1.) These

private-equity funds offer to buy an equity share in the entrepreneur’s blueprints at time t

behind the “veil of ignorance” about which locations on the circle will obtain the valuable

blueprints at time t+ 1. Because the probability that any given location will receive a non-

trivial endowment of blueprints is zero, the risk-averse entrepreneurs are eager to share their

endowment risk by selling shares to private-equity funds. These shares entitle private-equity

investors to a fraction υ of the profits that will be produced by the newly arriving blueprints

18More precisely, only a finite number of locations experience increments exceeding ε for any ε > 0.
19A similar outcome obtains for the non-PE backed blueprints given by ΓU , which we describe shortly.
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in perpetuity. A fraction 1 − υ is “inalienable,” a reduced form way of capturing incentive

effects of equity retention.

Finally, we specify the allocation of the blueprints ηAtΓ
U
t+1. These blueprints are meant

to capture entrepreneurship that is not backed by private equity. For simplicity, we assume

that these blueprints accrue to entrepreneurs born at time t+1 (rather than t), so that there

is no room for trade with private equity funds behind the veil of ignorance. We note that

(a) the inclusion of blueprints that are not backed by private equity is mostly for realism

and with an eye towards calibrating the model later on, and (b) the distribution of ηAtΓ
U
t+1

across entrepreneurs arriving at time t + 1 is irrelevant for the description of equilibrium.

Only the total size of ηAtΓ
U
t+1 matters.20

3.4 Markets

At each point in time, an investor can trade a zero net-supply bond. To complete the

market with respect to the random death events, we follow Blanchard (1985) and assume

that agents can also trade annuities with competitive insurance companies that break even.

These annuity contracts entitle an insurance company to collect the wealth Wi,t of an agent

i in the event that she dies at time t and in exchange provide her with an income stream

λWi,t while she is alive. We refer to Blanchard (1985) for further details.

Investors at time t can trade costlessly in the shares of all companies created prior to time

t (“public equity”). Aside from shares in existing companies, investors can also buy shares of

portfolios sold by competitive, private-equity funds. Each private-equity fund is positioned

in a location i on the circle. This fund approaches the entrepreneurs in an arc of length

∆ ≤ 1 centered at location i and purchases an equally weighted portfolio of ownership rights

to the random amount of blueprints that the entrepreneurs will be receiving at time t + 1.

The parameter ∆ captures the contractual and monitoring difficulties of signing contracts

with a multitude of innovators.

The private equity finances its purchases by selling shares to old investors. (Investors are

entrepreneurs from previous periods). Each investor is allocated to a position on the circle

and purchases shares in the portfolio offered by the private equity fund positioned in that

location. Private equity funds are competitive and break even by selling their portfolios to

investors for 1
∆i

∫ i+
∆i
2

i−∆i
2

ΠN
j,tdj, where ΠN

j,t is the price that the private equity fund must pay

20However, this distribution matters for the wealth dispersion. See Section 6.
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Figure 5: The distribution of equal weighted returns. The left figure depicts the blueprints accruing to the
portfolio formed by the private equity fund in each location i, which is simply an equal weighted average of
the blueprints accruing to locations in an arc ∆ around the private equity fund’s location. The right figure
is identical to the left figure except that the results are now depicted in polar coordinates.

to the entrepreneur in location j for purchasing an equity share to the blueprints she sells.

Assuming a location-invariant equilibrium, such that ΠN
j,t = ΠN

t , the price of each portfolio

share is just 1
∆i

∫ i+
∆i
2

i−∆i
2

ΠN
j,tdj = ΠN

t .

The right plot of Figure 4 and the two plots in Figure 5 illustrate how private equity

funds can facilitate risk sharing in this economy. By purchasing an equal-weighted portfolio

of shares to blueprints on an arc of length ∆, the private equity funds are able to “smooth

out” the spikes of the gamma process. Indeed, as the two figures illustrate, they can offer

their investors a portfolio of blueprints that has the same mean as the number of blueprints

that arrive in each location, but is second-order stochastically dominant.21

In summary, the private equity funds facilitate risk sharing between the old and the new

investor-cohorts behind “the veil of ignorance” about future endowments. The parameter υ

controls the fraction of shares sold by young to old investors (and thus the extent of “inter-

21Specifically, by using properties of the gamma distribution, one can show that 1
∆

∫ i+∆
2

i−∆
2

dΓN
j is gamma

distributed with shape aN∆ and rate bN∆. Accordingly, 1
∆

∫ i+∆
2

i−∆
2

dΓN
j has mean equal to aN

bN
, which is

independent of ∆, and standard deviation equal to
√
aN

bN
√
∆
, which is declining in ∆. Indeed, if ∆2 > ∆1, then

1
∆2

∫ i+
∆2
2

i−∆2
2

dΓN
j second-order stochastically dominates 1

∆1

∫ i+
∆1
2

i−∆1
2

dΓN
j (Bawa (1975)). For future reference,

we note that the correlation between 1
∆

∫ i+∆
2

i−∆
2

dΓN
j and ΓN =

∫ 1

0
dΓN

j , is
√
∆.
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cohort” risk sharing), whereas the parameter ∆ controls the dispersion of private equity

returns across existing investors (therefore, the extent of “intra-cohort” risk sharing).

3.5 Budget constraints

With these assumptions, the dynamic budget constraint of an investor who resides in location

i can be expressed as

Wi,t = SE
i,tAtΠ

E
t +Bi,t + SN

i,tΠ
N
t + ci,t, (7)

Wi,t+1 = SE
i,tAt

(
1 + ηΓE

t+1

) (
ΠE

t+1 + πt+1

)
+ (1 + rft )Bi,t + (8)

SN
i,tAt

(
ΠE

t+1 + πt+1

) υη
∆

∫ i+∆
2

i−∆
2

dΓN
i,t+1 + λWi,t+1,

where ΠE
t is the market value of a blueprint at time t, SE

i,t is the number of shares of the

market portfolio, Bi,t is the amount invested in bonds, rft the interest rate, SN
i,t is the number

of shares purchased in the private equity fund in location i, and ΠN
t was defined earlier as

the price of a private-equity share. We note also that Wi,t+1 is the agent’s wealth at t + 1

conditional on survival and the term λWi,t+1 in the second line of (8) represents annuity

income. A convenient way to express (8) is

Wi,t+1

Wi,t

=
1− ci,t

Wi,t

1− λ

(
ϕB
i

(
1 + rft

)
+ ϕE

i R
E
t+1 + ϕN

i R
N
i,t+1

)
, (9)

where ϕB
i ≡ Bi,t

Wi,t−ci,t
, ϕE

i ≡ SE
i,tAtΠE

t

Wi,t−ci,t
, and ϕN

i =
SN
i,tΠ

N
t

Wi,t−ci,t
are the post-consumption wealth

shares invested by investor i in bonds, existing firms, and newly arriving firms respectively.

RE
t+1 ≡ ΠE

t+1+πt+1

ΠE
t

(
1 + ηΓE

t+1

)
is the gross return of investing in existing firms, which is the

product of the gross return from investing in a fixed blueprint,
ΠE

t+1+πt+1

ΠE
t

, and the growth

factor
(
1 + ηΓE

t+1

)
, which reflects the new blueprints accruing to existing firms at time t+1.

Finally, RN
i,t+1 ≡ At

ΠN
t

ηυ
∆

(
ΠE

t+1 + πt+1

) ∫ i+∆
2

i−∆
2

dΓN
i,t+1 is the gross return from investing in newly

arriving blueprints, which is the product of the number of new blueprints accruing to the

private equity fund, ηAt

∫ i+∆
2

i−∆
2

dΓN
i,t+1, the ownership share, υ, and the value ΠE

t+1 + πt+1 of a

blueprint at time t+ 1, divided by the purchase cost of a share, ΠN
t .

An important observation about (9) is that, as long as ΠN
j,t = ΠN

t for all j ∈ [0, 1), the

portfolio choices ϕB
i , ϕ

E
i , and ϕN

i , as well as
ci,t
Wi,t

, are the same for all investors, irrespective

of their level of wealth and the location where they reside at time t. Phrased differently, if
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ΠN
j,t is the same at all locations, the equilibrium is location invariant.

To ensure that ΠN
j,t = ΠN

t for all j ∈ [0, 1) we make one final, “free entry” assumption:

investors can relocate prior to the start of trading in each period, so that the total wealth of

all the investors positioned in each location becomes the same.22 Given the location-invariant

nature of the distribution of new blueprints across the circle, the investors have the incentive

to position themselves in locations that offer lower prices for a share to the portfolio of new

firms. The assumption of free entry equalizes prices across locations, a situation that occurs

when the wealth of investors positioned in every location is identical across locations.

3.6 Location-invariant equilibrium

The definition of a location-invariant equilibrium is standard. We normalize the supply of

shares to unity and define an equilibrium as a collection of prices ΠE
t and ΠN

t , portfolio

allocations ϕB, ϕE, and ϕN , and consumption processes for all agents cj,t such that a) given

prices, ϕB, ϕE, ϕN , and cj,t are choices that maximize (1) subject to (9), b) the consumption

market clears:23
∫
j
dcj,t = Atπt, c) the markets for all shares (both new and existing) clear:∫

j
dSE

j,t =
∫
j
dSN

j,t = 1, and d) the bond market clears:
∫
j
dBj,t = 0.

4 Solution

Next we construct a location-invariant, time-invariant, and symmetric equilibrium in the

sense that all agents choose the same portfolio and consumption-to-wealth ratio. Since all

investors choose the same portfolio shares ϕB, ϕE and ϕN , bond-market clearing implies

ϕB = 0. The i.i.d. nature of shocks also imples that interest rate rf , the ratios PE ≡ ΠE
t

πt
,

PN ≡ ΠN
t

Atπt
, and the consumption-to-wealth ratio c ≡ ci,t

Wi,t
are the same for all agents and

22Mathematically, such a relocation is always possible; one of the infinitely many ways to achieve it is to
assign the investor with wealth Wj,t to location F−1(Wj,t), where F (·) is the wealth distribution. Because
of the assumption that there is a continuum of investors in each location, this assignment is well defined.

23Note that we only need to clear the consumption market for all generations of entrepreneurs, who
collectively consume aggregate profits. The remaining consumption accrues to the hand-to-mouth workers.

19



constant across time. Assuming existence of such an equilibrium, the return RE
t+1 is

RE
t+1 =

πt+1 +ΠE
t+1

ΠE
t

(
1 + ηΓE

t+1

)
=

πt+1

πt

(
1 + PE

PE

)(
1 + ηΓE

t+1

)
=

Zt+1

Zt

(
1 + PE

PE

)(
At+1

At

)−α (
1 + ηΓE

t+1

)
=

Zt+1

Zt

(
1 + PE

PE

)
(1 + ηΓt+1)

−α (1 + ηΓE
t+1

)
. (10)

Moreover, using similar reasoning, the return on a private-equity investment is

RN
i,t+1 =

υAt

(
ΠE

t+1 + πt+1

)
η
∆

∫ i+∆
2

i−∆
2

dΓN
i,t+1

AtπtPN
=

RE
t+1

1 + ηΓE
t+1

PE

PN

ηυ

∆

∫ i+∆
2

i−∆
2

dΓN
i,t+1

=
PE

PN
RE

t+1Hi,t+1, (11)

where Hi,t+1 is defined as

Hi,t+1 ≡
(
1 + ηΓE

t+1

)−1 × ηυ

∆

∫ i+∆
2

i−∆
2

dΓN
i,t+1. (12)

Proposition 1 describes explicitly the symmetric time- and location-invariant equilibrium.

Proposition 1 There exists a location-invariant, time-invariant, and symmetric equilibrium
with a constant consumption-to-wealth ratio for all agents given by c = 1− β̂, and constant
portfolio shares for all agents given by ϕB = 0, ϕN = 1− ϕE, and

ϕE =
Et

[(
RE

t+1

)1−γ
(1 +Hi,t+1)

−γ
]

Et

[(
RE

t+1

)1−γ
(1 +Hi,t+1)

1−γ
] . (13)

The equilibrium values of PE and PN are constant and given by

PE = ϕE(1− β̂)−1β̂ (14)

PN =
(
1− ϕE

)
(1− β̂)−1β̂ (15)

and the interest rate is constant and equals

1 + rf =
Et

[(
RE

t+1

)1−γ
(1 +Hi,t+1)

−γ
]

Et

[(
RE

t+1

)−γ
(1 +Hi,t+1)

−γ
] . (16)

We analyze the properties of the equilibrium in steps. First, we derive the implications

of the equilibrium for risk sharing both within and across cohorts of entrepreneurs. Then we
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present results on the equilibrium expected returns of existing firms (RE
t+1) and private-equity

shares (RN
i,t+1), and highlight implications for performance evaluation of private equity. We

also discuss implications for the portfolio share of private equity, which we refer to as the

(relative) size of private equity investments.

4.1 Risk-sharing implications

To derive the implications of the model for risk sharing we start with a proposition.

Proposition 2 Aggregate wealth growth is given by

Wt+1

Wt

=
Zt+1

Zt

(1 + ηΓt+1)
1−α , (17)

while an individual investor’s wealth growth (conditional on survival) is given by

Wi,t+1

Wi,t

=
Wt+1

Wt

(
1

1− λ

)(
1 + PE

1 + PE + PN

)(
1 + ηΓE

t+1 + ηυΓN
t+1

1 + ηΓt+1

)
Xi,t+1, (18)

where

Xi,t+1 ≡
1 + ηΓE

t+1 + ηυΓN
t+1

1
∆

∫ i+∆
2

i−∆
2

dLj,t+1

1 + ηΓE
t+1 + ηυΓN

t+1

and dLj,t+1 ≡
dΓN

j,t+1

ΓN
t+1

. (19)

Equation (18) shows that risk is imperfectly shared both within and across cohorts.

The impairment of within-cohort risk sharing is captured by the term Xi,t+1, which reflects

heterogenous returns experienced by existing investors. This heterogeneity is driven by the

investors’ inability to invest in all arriving blueprints. In the limiting case where ∆ = 1, and

investors can purchase rights to all blueprints across the circle, the term Xi,t+1 equals 1, and

the within-cohort lack of risk sharing disappears.

However, risk-sharing is limited not only along the intra-cohort dimension, but also across

cohorts. Even if ∆ = 1, equation (18) shows that individual wealth
Wi,t+1

Wi,t
and aggregate

wealth Wt+1

Wt
are not perfectly correlated as long as either (a) entrepreneurs have to retain

some equity (υ < 1) or (b) some blueprints accrue to entrepreneurs who have no access to

the private equity funds (ΓU
t+1 ̸= 0). The term

1+ηΓE
t+1+ηυΓN

t+1

1+ηΓE
t+1+ηΓN

t+1+ηΓU
t+1

in equation (18) captures

the inter-cohort lack of risk sharing. In general this term is random and smaller than one,

except in the special case where υ = 1 and ΓU
t+1 ≡ 0.

In summary, ∆ controls the extent of intra-cohort risk sharing, while υ and ΓU
t+1 control

inter-cohort risk sharing. If ∆ = υ = 1, and all entrepreneurs have access to private equity
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(ΓU
t+1 = 0), then risk is perfectly shared both within and accross cohorts; individual wealth

growth and aggegate wealth growth are perfectly correlated. However, even in that case indi-

vidual and aggregate wealth-growth rates differ by a negative constant. Indeed, aggregating

the wealth growth of all investors surviving into t+ 1, we obtain

log

(
(1− λ)

∫
Wi,t+1di

Wt

)
− log

(
Wt+1

Wt

)
= log

(
1 + PE

1 + PE + PN

)
< 0. (20)

The negative constant reflects the fact that the existing investors have to pay the arriving

entrepreneurs to purchase their blueprints. If all blueprints accrued to existing firms (ΓN
t+1 =

ΓU
t+1 = 0 ) then the entire portfolio of the investor is invested in existing firms (ϕE = 1, ϕN =

0); therefore PN = 0 and aggregate and individual growth rates are identical.

4.2 Implications for the stochastic discount factor (SDF)

Since the wealth-to-consumption ratio is constant, our conclusions on wealth changes apply
without modification to consumption changes of individual investors: an individual investor’s
consumption change is given by the right hand side of (18). The SDF Mi,t+1/Mi,t of an
individual investor is given by

Mi,t+1

Mi,t
= β̂

(
Wi,t+1

Wi,t

)−γ

∝ (1 + ηΓt+1)
γα

(
1 + ηΓE

t+1 +
ηυ

∆
ΓN
t+1

∫ i+∆
2

i−∆
2

dLj,t+1

)−γ (
Zt+1

Zt

)−γ

. (21)

For the markets where all investors are participating (in particular, the market for existing

stocks and the risk-free asset), any
Mi,t+1

Mi,t
is a valid SDF, and so is the (cross-sectional)

average of
Mi,t+1

Mi,t
, defined as

Mt+1

Mt

≡ Et

[
Mi,t+1

Mi,t

∣∣∣ΓE
t+1,Γ

N
t+1,Γ

U
t+1

]
, (22)

where the expectation is taken over all agents i that participate in financial markets at time

t. For our purposes, the interesting property of Mt+1

Mt
is its covariance with the growth shocks

ΓN
t+1 and ΓU

t+1. To isolate this covariance, we assume that Zt is non-stochastic.

Proposition 3 Assume that Zt is deterministic.

(i) When ∆ = 1 and υ = 1, Cov
(

Mt+1

Mt
,ΓN

t+1

)
< 0.

(ii) By contrast, Cov
(

Mt+1

Mt
,ΓN

t+1

)
> 0 when either υ or ∆ is sufficiently small.

(iii) For all parameter values, Cov
(

Mt+1

Mt
,ΓU

t+1

)
> 0.

Proposition 3 shows how risk sharing imperfections can determine whether the SDF (i.e.,
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the marginal utility of the representative investor) rises or declines as the innovative activity

by new entrants, ΓN
t+1, increases. If υ = ∆ = 1, the uncertainty associated with ΓN

t+1 is

perfectly shared both within and across investor cohorts, and large realizations of ΓN
t+1 are

“good news” for the representative investor (the SDF declines). The gains in the value of the

portfolio of new firms are enough to offset the losses from the reduced value of the existing

assets owned by the representative investor.24 However, away from the perfect risk-sharing

limit, large realizations of ΓN
t+1 are “bad news.” For instance, if risk is shared perfectly

within cohorts (∆ = 1) but imperfectly across cohorts (υ < 1 and sufficiently small), then

the gains from a large innovation shock ΓN
t+1 accrue predominantly to new entrepreneurs. A

low value of υ means that entrepreneurs retain a large share of their blueprints, and therefore

the share sold to investors, 1− υ, is not enough to offset the losses on their existing assets,

whose profits are displaced. This intuition is clearest in the case where there is no trade

whatsoever between existing investors and new entrepreneurs through private-equity funds

(statement (iii) of Proposition 3); a large increase in the number of those blueprints (ΓU
t+1)

is unambiguously “bad news” for the representative investor (high marginal utility state).

Even if risk is perfectly shared across cohorts (υ = 1,ΓU
t+1 ≡ 0), large realizations of ΓN

t+1

may still be (unconditionally) perceived as high-marginal-utility states when ∆ is sufficiently

small. In this situation existing investors as a group gain from increased innovation, since

they buy all the shares of the newly arriving entrepreneurs before the realization of ΓN
t+1. As

individual investors, however, they do not know ex ante whether they will receive a large or

a small allotment of the new blueprints. Since any given investor is risk averse, she worries

about events where ΓN
t+1 is large (so that her existing assets will lose significant value), but

her own personal allotment of new blueprints is not large enough to offset the losses. As a

result, she views high realizations of ΓN
t+1 as high marginal-utility states.

In short, the model allows for a positive covariance between the SDF and the increments

to blueprints that do not accrue to existing firms (ΓN
t+1 and ΓU

t+1). As we argue in Section 5.3,

this positive covariance is important for generating a value premium among traded stocks.

24Note that equation (10) implies that a large realization of ΓN
t+1 implies a higher realization of Γt+1 and

therefore a lower return on existing assets, RE
t+1.
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Figure 6: This figure depicts (a) the sign of the covariance between marginal-utility growth Mi,t+1/Mi,t and
the innovation shock ΓN

t+1 and (b) the sign of the expected-return differential between private and public
equity investments, Et[R

N
i,t+1 −RE

t+1], for each pair of the tradable share, υ, and arc width, ∆.

4.3 Equilibrium excess returns and public market equivalents

In this section we compare the expected returns on existing equities, Et[R
E
t+1], with those on

private-equity investments, Et[R
N
i,t+1]. The main result of this section is that Et[R

N
i,t+1−RE

t+1]

could be of either sign. Moreover, the sign of Et[R
N
i,t+1 − RE

t+1] neither determines, nor is

determined by, the sign of Cov
(

Mt+1

Mt
,ΓN

t+1

)
. To that end, we first state a formal result.

Proposition 4 Let Z be independent of all other random variables.
(i) Fixing ∆ > 0, for υ small enough it holds that Et[R

N
i,t+1 −RE

t+1] < 0.
(ii) Fixing υ > 0, if ∆ is small enough then Et[R

N
i,t+1 −RE

t+1] > 0.

Proposition 4 captures the two forces behind the determination of the sign of Et[R
N
i,t+1 −

RE
t+1]. On the one hand, investing in new blueprints acts as a hedge against the displacement

of old blueprints by new ones. On the other hand, investing in new blueprints adds non-

diversifiable risk to the portfolio whenever ∆ < 1. The tension between those two forces

is illustrated in the two statements of the proposition: Fixing ∆ and lowering the tradable

fraction, υ, makes the hedging aspect of new blueprints more valuable to the point where

their expected return becomes lower than investing in already traded equities (statement (i)).

By contrast, fixing υ and reducing ∆ makes the idiosyncratic-risk aspect more prominent;

since this risk is non-diversifiable, it raises the required expected return Et[R
N
i,t+1] above

Et[R
E
t+1] (statement (ii)).
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Taken together, Propositions 3 and 4 imply that the signs of Cov
(

Mt+1

Mt
,ΓN

t+1

)
and

Et[R
N
i,t+1−RE

t+1] are not linked. This is easiest to illustrate with Figure 6. The x-axis depicts

values of the tradable share, υ, while the y-axis depicts values of the arc width, ∆. The blue,

upward-sloping curve AB separates positive from negative values of Et[R
N
i,t+1 − RE

t+1] and

illustrates the two statements (i) and (ii) of Proposition 4. Similarly, the red, downward-

sloping curve CD separates positive from negative values of Cov
(

Mt+1

Mt
,ΓN

t+1

)
: By statement

(i) of Proposition 3 (and continuity), the points close to G (υ = ∆ = 1) entail a nega-

tive value of Cov
(

Mt+1

Mt
,ΓN

t+1

)
. By contrast, close to the origin (Point A), statement (ii) of

Proposition 3 implies positive values of Cov
(

Mt+1

Mt
,ΓN

t+1

)
.

The most noteworthy result of Proposition 4 is part (ii). Combined with Proposi-

tion 3, it establishes that there is a small enough ∆ such that both Et[R
N
i,t+1 − RE

t+1] and

Cov
(

Mt+1

Mt
,ΓN

t+1

)
are positive (region Z4 in Figure 6): The small value of ∆ implies that

investing in new blueprints is too imperfect a hedge against high realizations of ΓN
t+1.

One implication of Proposition 4 we wish to emphasize is that investments in private

equity may offer a higher expected return than investments in traded equities simply because

of their non-diversifiable risk. Interestingly, as a consequence, in our model the most popular

method for computing the “risk-adjusted” performance of private equity investments (the

Kaplan and Schoar (2005) PME) indicates “risk-adjusted outperformance,” even though all

expected returns are entirely driven by risk and there is no notion of “skill” or “alpha.”

The next proposition proves this result for the special case γ = 1, i.e., the special case

that is most favorable for the validity of PME calculations. Indeed, in that case usage of the

PME is theoretically justified by the Sharpe-Lintner-Mossin CAPM: a PME above (below)

1 can be equivalently viewed as a CAPM alpha above (below) 0.25

Proposition 5 For any ∆ ∈ [0, 1] and υ ∈ [0, 1] it holds that Et

[
RN

i,t+1

RE
t+1

]
≥ 1 if γ is equal

(or sufficiently close) to 1.

In our stylized model private-equity investments can be viewed as a cash outflow at time

t (“commitment” in the language of the PE industry) and a cash inflow (“exit”) at t+1. The

numerator of RN
i,t+1 is the value of exits and the denominator is the value of commitments,

so that Et

[
RN

i,t+1

RE
t+1

]
corresponds to the PME. The remarkable aspect of Proposition 5 is not

merely that the PME is different from one. This is to be expected, since in our framework

25See Sorensen and Jagannathan (2015), Korteweg and Nagel (2016), and Korteweg et al. (2023).
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the return on existing, traded equities, RE
t+1, is not the return on the total wealth of the

representative investor. The remarkable aspect is that for any ∆ ∈ [0, 1] and any υ ∈ [0, 1]

this misspecification leads to a value of the PME above one.

The argument is simple enough to sketch in a few lines and applies broadly to any

unitary-risk-aversion model where the total return on wealth consists of two positive-net-

supply assets, say asset 1 and 2, so that the total return on wealth is a weighted average,

Rw = a1R1+(1−a2)R2, with weights a1 and a2 that are positive and sum to one, a1+a2 = 1.

The assumption of unit risk aversion implies that26 E
[
R1

Rw

]
= E

[
R2

Rw

]
= E

[
Rw

Rw

]
= 1, and

therefore we obtain

1 =
1

E
[
Rw

Rw

] =
1

E
[

R1

a1R1+a2R2

] ≤ E

[
a1R1 + a2R2

R1

]
= a1 + (1− a1)E

[
R2

R1

]
, (23)

where the inequality follows from Jensen’s inequality applied to the convex function x 7→ x−1.

Since a1 < 1, inequality (23) is equivalent to E
[
R2

R1

]
≥ 1.

In short, while it is true that E
[
R2

Rw

]
= 1, the expectation of the ratio E

[
R2

R1

]
is always

larger than one. In our model, RE
t+1 is just one component of the total return on wealth of

investors in location i. The other component is RN
i,t+1. Therefore, inequality (23) applied to

our model leads to Et

[
RN

i,t+1

RE
t+1

]
≥ 1.

Proposition 5 asserts that this bias of the PME towards values larger than one extends

beyond the special case γ = 1. Indeed, when we calibrate the model (Section 6.2) we find

that the PME is well above one also for larger values of risk aversion.

4.4 The participation arc ∆ and the PE portfolio share

To gain some intuition on the size of PE investments compared to total assets, ϕN , we provide

the following comparative-static results.

Proposition 6 For γ sufficiently close to one, ϕN is an increasing function of the parame-
ters η, υ, and ∆.

Proposition 6 states that, as expected displacement of old by new blueprints increases (an

increase in η), it becomes more attractive to invest in private equity. Similarly, improvements

in the contracting technology (higher υ, and/or higher ∆) also raise the share invested in

26Specifically, the SDF is mR−1
w for some constant m, but this constant m must equal 1. To see this, price

the traded return on wealth Rw: 1 = E
[
mRw

Rw

]
, implying m = 1.
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private equity. Proposition 6 allows some broad conclusions about the joint determination

of (a) aggregate growth, (b) inequality, (c) the size (that is, the portfolio share, ϕN) of the

private-equity industry.

An acceleration of disruptive growth (an increase in η) raises aggregate growth (a direct

implication of equation (2)), increases the portfolio share of the private-equity industry, and

also boosts the wealth shares of newly-rich entrepreneurs.27

However, if the increase in the share of private equity investments results mostly from

contractual improvements (an increase in υ or ∆), then aggregate output, Yt, is unchanged.

The increased share of private equity investments is only reflected in distributional outcomes

(less displacement of the old rich by the new rich, or less dispersed returns among private

equity investors.)

These observation may be helpful in providing an interpretation on the changing forces

behind the growth in private equity investments in the last four decades. For example the

rapid growth of the private-equity investment share in the mid-to-late nineties coincided with

strong TFP growth, increased displacement of old rich by new rich, and large dispersion in

the returns of PE investors.28 An increase in disruptive growth (a rise in η) would be able

to explain these observations jointly.

By contrast, while the private-equity investment share kept growing after 2000, TFP

growth was moderate, the displacement of old by new rich decelerated (Gomez (2023)), and

returns among private equity investors became less dispersed (Korteweg et al. (2023)). Taken

together, these observations suggest that the driving force behind the continued growth of

private equity during this period was not disruptive growth, but primarily improvements

inside the private-equity industry.

5 Extensions and Discussion

For simplicity, the baseline model contains only two types of assets: claims to existing

blueprints and claims to newly arriving blueprints. We next show how to embed additional

positive supply assets into the framework with minimal modeling extensions.

27Recall that a newly-rich entrepreneurs retain a fraction of their equity, either because υ < 1, or because
they belong to the set of entrepreneurs who have no access to private equity (when ΓU ̸= 0.) A rise in η
raises the value of new as opposed to old assets and thus raises the wealth share of new entrepreneurs.

28For the historical path of displacement activity, see Gomez (2023). For a plot of the cross-sectional
dispersion of the IRR’s obtained by public pension funds across time, see Korteweg et al. (2023).
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5.1 Buyout funds

We have referred to the intermediaries that facilitate risk sharing between entrepreneurs and

existing investors using the term “private-equity” funds, rather than the narrower “venture-

capital” funds. The reason is that the crucial characteristics of private equity in our model

are that (a) some of the gains from innovation accrue to arriving (rather than existing)

cohorts of innovators and (b) the funds facilitate a partial trade between existing investors

and arriving investors.

By focusing on these two characteristics, venture-capital and buyout funds can be viewed

as performing similar economic functions. To understand this claim better, we next show how

a re-interpretation of some of the model’s mathematical structure would allow us to model

the particular functions performed by buyout funds. Specifically, recall that in the model

some of the new blueprints accrue to existing firms (a fraction ΓE
t+1/Γt+1). Now, assume

that each period a fraction of the existing firms lose their ability to receive new blueprints.

Newly arriving entrepreneurs (“managers”) can perform a “buyout,” by purchasing those

firms from existing investors and restoring their ability to receive an allocation of blueprints

over the next period, at which point the firms are re-introduced into the public market.

The assumption that the new entrepreneurs have the unique ability to restore the ability of

existing firms to receive new blueprints is equivalent to assuming that these new blueprints

are effectively their property, as in the baseline model. By making the same assumptions

as in the baseline model on the random allotment of new blueprints to new entrepreneurs,

there would again be room for buyout funds that would provide managers with the ability

to diversify their risk etc.29

In summary, there is little difference between assuming that the new entrepreneurs out-

29The main difference with the baseline model is that buyout funds would pay the manager a price equal to
the sum of (a) the present value of the existing blueprints of the firm and (b) the value of the new blueprints.
The uniquely skilled manager would simply pass through the first component of this sum to old investors in
order to purchase the firm from them. Therefore, the component of value that is shared between the private
equity fund and the manager is the value of the new blueprints, exactly as in the baseline model. Assuming
that the total sum, ΓE

t+1, accruing to all existing firms is unchanged (with the understanding that it now only
accrues to a subset of existing firms), this extended model leads to exactly the same consumption allocations
and SDF as the baseline model. The only difference is an “accounting” difference: Because the price paid
by investors to purchase a share of a private equity fund is the sum of existing and new assets, the return
from investing in private equity (from the perspective of an investor) is a portfolio return from the claim to
existing blueprints (without the ability to receive further blueprint allotments this period) and the return of
investing in new blueprints. In that sense, an investment in a buyout fund is a weighted average of (a) the
return of what we refer to in Section 5.3 as a return to a “value” stock, and (b) the idiosyncratic return in
a portfolio of new blueprints, reflecting managers’ ability to restore an existing firm’s profitability.
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right obtain the new blueprints and assuming that they obtain these blueprints indirectly

by restoring old firms’ ability to receive them.

5.2 Real assets

Equation (3) of the model states that the profit share Atπt is a constant share of output.

However, the profits of any individual blueprint are a declining fraction of output, akin to the

value of each blueprint “depreciating” over time. Indeed, equation (3) implies that the change

in the logarithm of the profits accruing to any fixed blueprint is −α log(At+1/At) + εt+1. In

that sense, a positive shock to technological advancement is a negative depreciation shock

for a fixed blueprint.30

One could view some assets (for example, land or commodities) as assets that are non-

displaceable in the sense that they are factors of production that are just as useful to new or

old firms. One simple way to capture the non-displaceability of such assets is to modify the

baseline model by assuming that a portion rFt = ζYt with ζ ∈ (0, 1−α) of output is channeled

as cashflow to the asset “land.” (Appendix B shows how to modify the micro-foundations

of the model to allow land and other non-displaceable factor of production.)

Once again, we construct an equilibrium where the price-to-rent ratio P F =
PF
t

rFt
is con-

stant, so that the return on land is given by RF
t+1 =

rFt+1+PF
t+1

PF
t

= Yt+1

Yt

1+PF

PF . Repeating the

arguments of Section 4.1, the wealth evolution of an individual investor, conditional on

survival, is

Wi,t+1

Wi,t

=
1

1− λ

Wt+1

Wt

(
ζ
(
1 + P F

)
α(1− α) (1 + PE + PN) + ζ (1 + P F )

+ (24)

α(1− α)
(
1 + PE

)
α(1− α) (1 + PE + PN) + ζ (1 + P F )

(
1 + ηΓE

t+1 + ηυΓN
t+1

1 + ηΓt+1

)
Xi,t+1

)
,

for some new constants PE and PN . Comparing (24) with (18), the only difference is that

the wealth growth of an individual investor now gains a fraction
ζ(1+PF )

α(1−α)(1+PE+PN )+ζ(1+PF )
of

aggregate wealth growth. The reason is intuitive: Since land captures a constant fraction of

total output, it actually benefits from higher values of ΓN
t+1, since those are associated with

higher output growth.

30This feature of the model is reminiscent of the role that a positive investment-specific shock (“IST”
shock) plays for the value of existing capital.
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Just as before, the return RE
t+1 is declining in ΓN

t+1, while RF
t+1 is increasing in ΓN

t+1.

Using arguments similar to those we employed for Proposition 3(ii), one can show that, for

sufficiently small ∆, υ, and ζ, we have E
[
RF

t+1

]
< E

[
RE

t+1

]
. Indeed, if Zt were deterministic,

then E
[
RF

t+1

]
< 1 + rf , reflecting that land is a hedge against displacement risk.

In short, the model predicts that the investments in gold or land, which are not subject to

displacement shocks, should underperform public equities in expectation. In turn, under the

additional assumptions of Proposition 4(ii), the expected return of private equities should

exceed the return of public equities. This ordering of expected returns across asset classes

appears consistent with the data (e.g., Mauboussin and Callahan (2020), see footnote 2).

We conclude this section with a caveat: Implicitly, we assume that “land” is a factor

of production that can be productively combined with any blueprints to produce profits.

Therefore, the cashflows that accrue to land are proportional to the aggregate profits of

all blueprints (or equivalently, aggregate output). If one assumed instead that a specific

lot of land is useful only to a fixed set of blueprints, then it would be more meaningful to

assume that the value of that lot is proportional to the profits of those specific blueprints.

Accordingly, it would be subject to the same displacement risk as those blueprints.

5.3 Heterogeneity among existing equities and the value premium

In presenting the baseline model, we assumed that all existing firms have the same profit

growth, At+1πt+1

Atπt
= πt+1

πt

(
1 + ηΓE

t+1

)
, which is the product of two components: (a) the profit

growth of a fixed blueprint, πt+1

πt
, and (b) the growth component

(
1 + ηΓE

t+1

)
, resulting from

the allotment of new blueprints to existing firms.

It is straightforward to introduce within-existing-firm heterogeneity, by assuming that

firms’ profit growth is heterogeneously exposed to the arrival of new competitors. The sim-

plest way to achieve this outcome, without changing any aggregate quantity, is to introduce

a third, firm-specific component to a firm’s profit growth. Specifically, we assume that firm

j’s profit growth is given by

Aj,t+1πt+1

Aj,tπt

=
πt+1

πt

(1 + ΓE
t+1)qj,t+1, (25)

where qj,t+1 is a positive, random variable that is i.i.d. across firms and time and has a
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(cross-sectional) expectation equal to 1. For example, assume that qj,t+1 is given by

qj,t+1 = e(Γ
N
t+1+ΓU

t+1)σζζj,t− 1
2
(ΓN

t+1+ΓU
t+1)

2σ2
ζ , (26)

with ζj,t ∼ N (0, 1) a standard, normal, i.i.d., firm-specific shock, drawn at the beginning of

period t. When σζ = 0, all existing firms experience identical profit growth, as in the baseline

model. Furthermore, for any value of the parameter σζ , the aggregate growth of existing

firms’ profits is the same as specified in Section 3, because integrating qj,t+1 across j equals

the cross-sectional expectation of qj,t+1, which is equal to 1 for any realization ΓN
t+1 + ΓU

t+1.

In short, qj,t+1 is purely a distributional shock across existing firms that does not impact any

aggregate quantity (SDF, aggregate dividend growth of the market portfolio, consumption

allocations, etc.).

However, the idiosyncratic component qj,t+1 allows us to introduce cross-sectional differ-

ences in the expected returns of existing equities. The reason is that each firm draws the

shock ζj at the beginning of period t, before trading commences. Investors don’t know the

magnitude of the displacement shocks ΓN
t+1 + ΓU

t+1 until the end of the period. But they

know that if ζj < ζk, then firm j’s profits will experience slower growth than firm k’s profits

from t to t+1 for any realization of ΓN
t+1+ΓU

t+1. In particular, the across-all-firms decline in

profits πt+1

πt
that occurs in response to a large realization of ΓN

t+1 +ΓU
t+1 is partially offset for

firms with a positive ζj and amplified for firms with a negative ζj. In that sense, it is helpful

to think of the heterogeneous ζj at the beginning of the period as heterogeneous exposures

(“betas”) to the sum of the displacement shocks ΓN
t+1 + ΓU

t+1.

We obtain the following.

Proposition 7 Let Ri,t+1 and Rj,t+1 denote the returns of firms i and j. We have

Et [Ri,t+1]

Et [Rj,t+1]
=

1 + Covt

(
Mt+1

Mt

/
Et

[
Mt+1

Mt

]
,
Aj,t+1πt+1

Aj,tπt

/
Et

[
Aj,t+1πt+1

Aj,tπt

])
1 + Covt

(
Mt+1

Mt

/
Et

[
Mt+1

Mt

]
,
Ai,t+1πt+1

Ai,tπt

/
Et

[
Ai,t+1πt+1

Ai,tπt

]) . (27)

We note that conditioning on the time-t information set implies that all moments in (27)

are conditional on ζi and ζj.

The main implication of (27) is as follows. Take two firms i and j and assume that (a)

ζi < ζj, so that firm i’s profit growth between t and t + 1 will be lower than firm j’s for

any realization of ΓN
t+1 + ΓU

t+1, and (b) the stochastic discount factor assigns high marginal

utility to large realization of ΓN
t+1 and ΓU

t+1. These two assumptions imply that the covariance
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of the stochastic discount factor with firm i’s profit growth,
Ai,t+1πt+1

Atπt
(normalized to have

expectation one), is smaller than the respective covariance for firm j.31 Accordingly, equation

(27) implies that firm i has a higher expected return than firm j. Therefore, stocks with

comparatively low profit growth (“value stocks”) have comparatively high expected returns.

In Section 6.2 we examine this “value premium” quantitatively.

5.4 Labor income and pension funds

Aggregate labor income is a constant fraction of output in our paper. (In Appendix B, we

micro-found this assumption by assuming a Cobb-Douglas production for the final good, and

a production function that is linear in labor for the intermediate goods.) Since aggregate

output is increasing in At, so is aggregate labor income.

In the baseline version of the model workers are hand-to-mouth consumers who do not

participate in financial markets. It is straightforward to relax this assumption. In particular,

if we make assumptions that ensure that the growth rate of the labor income of a fixed cohort

of workers grows at the same rate as the profits of existing firms, then we can allow workers

to participate in financial markets without substantially modifying the model.

At the end of Appendix B we micro-found such an extension, by assuming that a unit

of labor in production, lt, is a Cobb-Douglas aggregate of labor inputs provided by different

cohorts of workers,

lt =
∏
s≤t

(lt,s)
at,s∑

s≤t at,s , (28)

where lt,s is the labor input of workers born at time s and the weights at,s are given by

at,t =
η(Γt−ΓE

t )

1+Γt
and at,s = as,s

∏t
s+1

1+ηΓE
u

1+ηΓu
. This specification implies that, although the

aggregate wage bill grows at the rate of aggregate output, the fraction of wages accruing to a

given worker cohort declines over time at the same rate as the profits of existing firms. One

motivation for such a specification is skill obsolescence, in that the skills of a fixed worker

cohort follow the fate of the technologies they encountered when they joined the workforce.

If one adopts equation (28), and allows workers access to financial markets on the same

terms as entrepreneurs, then all our conclusions carry through without modification. While

workers’ and entrepreneurs’ initial endowments may differ, the fact that their endowment

31Because πt+1

πt
declines with ΓN

t+1+ΓU
t+1, the typical covariance is negative. Accordingly, “smaller” means

negative and larger in absolute value.
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aE 14.06 α 0.80
aN 17.36 γ 9.00
aU 1.23 ∆ 0.50
bE 0.26 υ 0.80
bN 0.03 ρ 0.95
bU 0.39 1− λ 0.90
E[ε] -0.23 β 0.85
σ(ε) 0.07

Table 1: Parameters used for the calibration. One model period is five years.

growth rates are the same leads to the same SDF, portfolio choices, etc.32 In particular, if

one took the view that pension funds invest in bonds, existing stocks, and private equity on

behalf of workers to maximize their welfare, then the workers’ portfolios would be the same

as the portfolios of the investors in our baseline model.

6 Calibration

Our approach to calibrating the model follows the asset pricing literature: We first fix

some assumptions on preference parameters that are in line with the macro-asset pricing

literature. We then choose technological parameters to match endowment-related first and

second moments (aggregate consumption, the ratio of new-to-old stock market capitalization,

the cross-sectional dispersion of new asset allocations, etc.) The combination of preference

and endowment assumptions have implications for risk premiums (equity risk premium, value

premium, etc.) as well as for the PME values of private-equity returns. The assumptions on

the allocation of new blueprints along with the equilibrium asset prices have implications for

inequality. In Section 6.1 we describe how we choose preference and technological parameters.

In Section 6.2 we focus on the model implications for risk premia and in Section 6.3 we

examine the model implications for inequality.

6.1 Parameter choice

We choose a period to be five years and thus compare five-year returns in the data to those

in the model. The reason for this choice is that in our model t is the date of the capital

32This is a direct implication of the homogeneity properties of Epstein-Zin-Weil utilities.
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outflow (when the capital is called on a private-equity investment) and t + 1 is the date of

“exit.” Typically, there is a 5-7 year distance between these dates.33

For preference parameters we choose an annual discount rate of approximately 3% per

year and an annual birth/death rate of approximately 2%, which are common choices in

the literature. Taking into account that a period is five years we obtain β = 0.975 ≈ 0.85

and (1 − λ) = 0.985 ≈ 0.9. For risk aversion we choose γ = 9, which is in the range of

values that are commonly used in the asset pricing literature. We set υ = 0.8, implying that

entrepreneurs retain about 20% of the equity share in a typical private-equity deal.34

In terms of the parameters that control output, we set α to match the share of economic

rents (“pure profits”) in production. In particular, the value α = 0.8 implies a profit share

of α(1−α) = 16%. This is in line with the estimates in the literature, especially in the more

recent decades.35

We then choose the endowment parameters that control the stochastic properties of

blueprint increments (ΓE
t+1, Γ

N
t+1, and ΓU

t+1) and the neutral process Zt+1. The model has

eight parameters that control the univariate distribution of these four random variables.

Two of them, E[ε] and σ(ε), are the mean and standard deviation of the normal, i.i.d., shock

εt+1 = ∆ log(Zt+1). The parameters al and bl for l ∈ {E,N,U} determine the distributions

of Γl
t+1. (Without loss of generality, we may set η = 1.36) We choose these eight parameters

with the goal of approximately matching eight moments in the data, as follows. We target

(1) the mean and (2) standard deviation of aggregate consumption growth, (3) the mean and

(4) standard deviation of the ratio of old-to-total stock market capitalization, (1 + ΓE
t+1) ×

(1 + ΓE
t+1 + ΓN

t+1 + ΓU
t+1)

−1, and (5) the mean ratio of VC-backed to non-VC-backed IPOs,
ΓN
t+1

ΓU
t+1

. Jointly with the other parameters in the model, the parameters al and bl also determine

(6) the standard deviation (and higher moments) of the logarithmic excess returns of private

equity in the time-series, (7) the share of private equity in an investor’s portfolio, and (8)

the real interest rate.

33An additional benefit of the choice of five-year horizons is that it mitigates any measurement error in
annually reported data of public-pension-fund alternative-investment returns.

34In a typical first round venture capital contract, the VC obtains about 30-40% of equity and the founders
retain 20-30%. A fraction of 20-30% accrues to Angel investors and a fraction of about 20% remains in
the option pool. Source: “https://www.entrepreneur.com/money-finance/business-dividing-equity-between-
founders-and-investors/65028.” By setting the entrepreneur’s share to a low number, we wish to account for
further dilution in future rounds of financing.

35See Barkai (2020) and Barkai and Panageas (2023).
36The scaling property of the gamma distribution implies that any other choice of η would be equivalent

to multiplying each bl by η.
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Figure 7: Quantile-quantile plot of the ratio of old-to-total stock market capitalization, (1+ΓE
t+1)/(1+Γt+1),

in the model and the data. The source of the data on the ratio of old-to-total stock market capitalization
is Gârleanu and Panageas (2023), which computes the ratio of the value of annual additions to the market
portfolio as a fraction of the value of the market portfolio at an annual frequency. We compute rolling 5-year
observations and compare them to the model.

We make one additional assumption to match the beta of private equity returns on public

equity returns. Specifically, we assume that the shocks to εt+1 and ΓN
t+1 are correlated. This

allows us to capture the cyclical nature of private equity returns in the data. Since εt+1 is

normally distributed, whereas ΓN
t+1 is gamma distributed, we use a Gaussian copula to model

the correlation between εt+1 and ΓN
t+1. We choose a correlation of ρ = 0.95 in the specification

of the Gaussian copula to match a private-equity-return beta to the public-market-portfolio

return around unity. This choice is motivated by the empirical literature,37 and it helps

illustrate that the above-unity PME values in our calibration are not the result of a beta

that differs substantially from unity. Finally, we specify ∆ to match the cross-sectional

dispersion of private equity returns in the data.

6.2 Implications for displacement, cross-sectional dispersion, and
asset prices

We next compare the model to the data. We start by illustrating that the model can match

two aspects of the data with the chosen parameters, namely (a) the displacement of old firms

by new firms in the market portfolio and (b) the cross-sectional dispersion of private-equity

returns. In our model (a) controls the extent of intertemporal risk sharing, while (b) controls

the extent of intratemporal risk sharing.

37Estimates of this “beta” vary a lot in the literature depending on the time-period, the methodology, etc.
For a recent survey of this literature, see Section I of Boyer et al. (2023). In the literature one encounters
values ranging from 0.75 all the way to numbers slightly above 2, but with most numbers being in the vicinity
of one.
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Figure 8: Dispersion of private-equity returns in the model and the data. The left plot uses 5-year averages of
the (log) returns on alternatives reported in public pension plans’ Comprehensive Annual Financial Reports,
2001–2015. The right plot uses internal rates of returns on the private equity investments obtained by public
pension plans on their investments for all PE investments made between 1995 and 2009, ensuring that all
funds are closed and the IRR is not affected by unrealized exits. Source: Korteweg et al. (2023).

Over a five-year period, the old-to-total stock market capitalization ratio has a mean of

about 0.89 in the data (0.82 in the model) and a standard deviation of 0.074 in the data

(0.087 in the model).38 Figure 7 provides a quantile-quantile plot of this ratio in the data

and the model, which shows that the model matches the shape of the distribution of this

ratio reasonably well.

Figure 8 provides a visual illustration of the cross-sectional dispersion of private equity

returns across investors in the model and the data. The data is from US public pension

plans. As mentioned earlier, public pension plans are an attractive source of information,

since they are subject to FOIA requests, and therefore they produce annual reports detailing

their performance in various asset classes. Under the extended assumptions of Section 5.4,

pension plans can be viewed as one of the marginal investors in our framework, so that we can

use the dispersion of their private equity returns to discipline the respective dispersion in the

model. Specifically, over every (non-overlapping) five-year period we depict the distribution

of a pension plan’s five-year average of log-private equity returns minus the cross-sectional

mean of this quantity (across pension plans) over that same period. We contrast this cross-

sectional dispersion in the model and the data. In the left plot we use the data provided by

the Comprehensive Annual Financial Reports (CAFRs) of defined-benefit, public pension

plans in the US between 2000-2018, resulting in three non-overlapping five-year periods

38The source of the data on the ratio of old-to-total stock market capitalization is Gârleanu and Panageas
(2023), which computes the ratio of the value of annual additions to the market portfolio as a fraction of the
value of the market portfolio.
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Model Data

Consumption growth mean 0.021 0.020
Consumption growth std. dev. 0.039 0.037
Mean ratio of PE-backed to non-PE-backed IPOs 1.065 1.174
Std. dev. of log-PE return, σ(log(RN

i,t)) 0.186 0.141
Market-beta of private equity, βRE(RN

i ) 0.853 1.000
Portfolio share of PE, ϕN 0.074 0.080
Mean of real log risk-free rate, log(1 + rf ) 0.017 0.024
Log eq. prem., E[log(RE

t )]− log(1 + rf ) (model: unlevered, data: levered) 0.028 0.040
Std. dev. of pub. equity, σ(log(RE

t )) (model: unlevered, data: levered) 0.049 0.148
Std. dev. of real log-dividend growth (model: unlevered, data: levered) 0.049 0.107
PME, E

[
RN

i,t/R
E
t

]
1.084 1.130

Table 2: Model and data — various moments. The source of the data for real returns on public equity, the
interest rate, real dividend growth, and real consumption growth is the long historical sample provided by
R. Shiller’s website. To be consistent with the model, we compute non-overlapping five-year log returns and
annualize the moments. We do the same for consumption and dividend growth. The data for returns are
the 29 non-overlapping five-year intervals covering 1871–2016. (For consumption the data starts in 1889).
For the rest of the data sources, we refer to the text.

(2001-2015) for the 138 plans in the sample. To ensure that this cross-sectional dispersion

is not just a result of measurement error in CAFRs, the right plot uses deal-level internal

rates of return (IRR) of the private equity investments made by each public pension plan.39

Specifically, we compute a five-year average of IRRs for all the private equity investments

that each pension fund made over this period, and then subtract the cross-sectional mean

(across pension funds) of this quantity over that same period. Irrespective of which data

set we use, the figure shows that our model matches the large cross-sectional dispersion of

returns quite well.

Having discussed how the model matches the old-to-new capitalization ratio and the cross-

sectional dispersion of private-equity returns, Table 2 reports some additional, predominantly

asset-pricing, moments for the model (left column) and the data (right column). The first two

rows confirm that the model roughly matches the first two moments of aggregate consumption

growth. The combination of a unit IES and the fact that old investors’ consumption growth

is below aggregate consumption growth allows the model to match both the aggregate-

consumption growth moments and the low risk-free rate that we observe in reality. The

mean ratio of PE-backed to non-PE-backed IPOs mainly disciplines the split between the

39Both data sets are described in Korteweg et al. (2023).

37



Portfolio 2-1 3-1 4-1 5-1 6-1 7-1 8-1 9-1 10-1

Ex. returns, data -0.01 0.01 0.03 0.03 0.05 0.06 0.06 0.08 0.10
Ex. returns, model 0.02 0.02 0.03 0.03 0.04 0.04 0.05 0.05 0.06

Table 3: Value premium. The table reports the return to each of the top nine decile portfolios ranked by
the earnings-to-price ratio (E/P) in excess of the return on the first of the decile portfolios.

shocks ΓN and ΓU in the model. In terms of data sources, the data for the ratio of PE-

backed to non-PE-backed IPOs is from Jay Ritter’s website,40 and the standard deviation of

private equity returns (in the time series) is from CAFR reports. Finally, the table reports

a private equity share in the data equal to 8%. The data counterpart for this number has

been constantly growing from levels around 5% in 2001 to a number around 13% in 2023,41

with the 8% number in the data column being characteristic of the early 2010s.

Turning to the equity premium for existing equities, the model matches about 70% of

its empirical counterpart. (The logarithmic equity premium is 2.8% in the model and 4%

in the data.) In this context, it is useful to note that in the real world the leverage ratio is

approximately 1.7; accordingly, the Modigliani-Miller formula implies that the levered equity

premium should be about 1.7 times larger than the un-levered one. The same observation

about leverage applies to the model-implied dividend growth, which is about 50% of its

empirical counterpart. However, because the model abstracts from mechanisms that could

make the price-dividend ratio time-varying, it cannot account for the discrepancy between

the volatility of returns and the volatility of dividends in the data. By now there are several

approaches in asset pricing to account for this “excess” volatility (heterogeneous preferences,

beliefs, time-varying risk aversion, etc.), but such extensions would be just a distraction for

this paper.42

In terms of private equity returns, the model-implied PME is well above one (1.08), and

close to the mean PME value observed in the data (the mean PME is 1.13, the median

1.06.43) The fact that the PME is well above one shows that the conclusion of Proposition 4

40“Inital Public Offerings:Updated Statistics”, Page 18, reports that 54% percent of IPOs between 1980-
2023 were backed by PE (either buyout or VC).

41The source of the data is the website of Equable Institute, in particular, https://equable.org/wp-
content/uploads/2023/07/Equable-Institute State-of-Pensions-2023 Final.pdf.

42Gârleanu and Panageas (2023) illustrates that by simply adding time-varying, expected displacement, one
can generate time-varying discount rates even in economies where the aggregate endowment is deterministic.

43These numbers are from the 14,528 observations reported in the first table of Boyer et al. (2023).
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Min Rank 350 300 250 200 150 100 50

Data 20.5 17.2 13.0 16.0 10.7 11.1 6.8
Model 11.3 11.5 11.2 12.1 12.1 13.2 14.5

Table 4: Proportion of Forbes 400 represented by new entrants. Every year from 1999 to 2013, we compute
the proportion of new entrants over the previous five years classified by Forbes as “self-made” and who have
not appeared in the list previously. We do this separately for each rank range 351–400, 301–350, and so on.
We report the average of these proportions, for each rank range.

holds even for values of risk aversion quite far from one. This quantitatively non-trivial PME

in a model calibrated to match several of the features of PE investments (beta with respect to

the market, cross-sectional dispersion of returns, the share of private equity in an investor’s

portfolio, etc.) shows that the theoretical problems with the PME of Section 4.3 also appear

quantitatively relevant. To be clear, in our calibrated model the return of PE investments

exceeds that of public equities by 1.7% per annum. However, this is not “outperformance”

due to skill, it is just compensation for the risk of these investments.

Finally, we confirm that under our parameterization we obtain not only a positive risk

premium for new blueprints, but simultaneously a value premium. We use the model of

Section 5.3 with σζ = 0.25. Every period we sort stocks into ten bins based on their

beginning-of-period realization of the shock ζj. Because there is a monotone relation between

the stock’s ζj and its price-earnings ratio, it is immaterial if we form the portfolios based on

ζj or the stock’s price-earnings ratio. We compute the average expected returns to portfolios

consisting of all stocks in each of the ten bins, and we report, in Table 3, the spread between

each of the top nine decile portfolio-returns and the bottom-decile portfolio return. For

comparison, we also report the corresponding numbers from Fama and French (1992) (Table

IV). The data explains about 60% of the value premium. Specifically, the difference in

(levered) returns between the 10th and the 1st portfolio is 10% in the data, whereas the

respective difference between the model-implied (unlevered) returns is 6%.

6.3 Wealth distribution

Compared to the majority of models that study the wealth distribution in the presence of

heterogeneous returns, while keeping the population of agents fixed, this model highlights

the role of entry of new agents. In particular, the key feature of the model is that some

investors (especially the non-PE backed entrepreneurs who do not sell any of their equity)
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experience a rapid accession to wealth upon entry, followed by less volatile but lower average

returns thereafter.

This is an empirically attractive feature of the model, as we illustrated with Figure 2. We

tabulate the data plotted in that figure, as well as the model counterpart, in Table 4. Using

data from the Forbes 400, we find that approximately 20% of the individuals joining the

Forbes 400 list over a five-year period are new entrants — people who were not in any of the

previous 400 lists — and who displace previous members of the Forbes 400 from the ranks of

the 400 richest. The remarkable feature of the data to us, which we already highlighted, is

that the new entrants do not predominantly populate the lower ranks of the Forbes 400 list.

Only 20.5% of the entrants find themselves in the 350–400 range, while almost 20% populate

the ranks 150 and above. With its very dispersed distribution of wealth in the early stage

of an entrepreneur’s life, the model can match this remarkable phenomenon in the data, as

the second row of the table shows.44

Table 5 compares the stationary distribution of the model to the data. We simulate the

model, normalize the log wealth of the 100th richest individual to zero, and then report the

log wealth difference between the 150th to the 100th individual, the 200th to the 100th indi-

vidual, etc.45 The table shows that the model leads to a more dispersed wealth distribution

than what we observe in the data. For instance, in the data the 250th richest individual has

approximately 49.6% (e−0.7) of the wealth of the 100th richest individual, while in the model

that ratio is about 27.2% (e−1.3). We note that such real-world forces as taxes and split

inheritances, if modeled, would reduce the dispersion of the stationary wealth distribution.

7 Conclusion

This paper presents a unified, risk-based asset-pricing theory of expected returns across

conventional and alternative asset classes. The model makes two core assumptions: (a) young

firms engage in creative destruction and displace old firms, and (b) the gains to innovation

44In comparing the model’s implications to the data we use the discrete interval construction of Section
3.3. We partition the interval [0, 1) into K = 1000 subintervals of equal length and allocate the 1000 i.i.d.-
drawn gamma-increments to the innovators in that sub-interval. We record the wealth of the representative
innovator inside each subinterval, track its dynamics according to the model, and compute order statistics.
For large enough K, the order statistics of the discrete approximation on [0, 1) converge to the order statistics
of the gamma process on [0, 1), which do not depend on K. Therefore, the choice of K is largely immaterial
for our results (as long as it is large.)

45We choose the 100th individual as the base for comparison because the log wealths of the very richest
several individuals are estimated with error even if we simulate the model for a very long time.
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Rank 400 350 300 250 200 150

1982 -1.2 -0.9 -0.9 -0.7 -0.5 -0.2
1992 -1.1 -1.0 -0.8 -0.7 -0.5 -0.3
2002 -1.2 -1.0 -0.8 -0.7 -0.5 -0.3
2012 -1.3 -1.1 -0.9 -0.7 -0.5 -0.3
Model -2.4 -2.0 -1.7 -1.3 -0.9 -0.5

Table 5: Log-wealth of the richest individuals. Data is from Forbes 400. The log wealth of the 100th richest
individual is normalized to zero.

are extremely skewed; only a small number of arriving firms will end up valuable. The

random and extremely skewed allotment of new innovations is a source of risk for arriving

entrepreneurs, and also for old investors whose shares in existing firms lose value in response

to large creative-destruction shocks. The financial sector plays a key role in the model as a

device to facilitate risk sharing across arriving entrepreneurs and existing investors (“inter-

cohort risk sharing”) and within cohorts of existing investors (“intra-cohort risk sharing”).

Investing in every single arriving new venture is infeasible. In addition, entrepreneurs

are forced to retain a stake in their corporation. These two assumptions, along with the

extremely skewed distribution of the gains from innovation, imply that (a) both inter- and

intra-cohort risk sharing are imperfect and there is dispersion across investor returns in their

private-equity investments, and (b) a set of measure zero of entrepreneurs become ultra rich.

Using this model we show several results: (a) It is possible to reconcile some seemingly

contradictory patterns in the returns to private and public equities. In particular, the value

premium, which requires that public-equity growth options command a low risk premium,

is consistent with the seemingly high risk premium commanded by growth-option-intensive

venture capital investments. (b) The “public market equivalent” approach to risk-adjusting

the returns of private equity has an expected value higher than one. This result holds

even though all expected returns in our model reflect exclusively compensation for risk.

Thus, PME values above unity are not necessarily an indication of outperformance. (c) The

wealth dispersion among the ultra rich forms at an early stage. The cohort of new entrants

into the distribution of the ultra rich have a wealth dispersion not too dissimilar with the

existing rich. This suggests that entry and displacement are important forces to explain

the dynamics of the wealth distribution of the ultra rich. (d) Land and natural resources

are attractive as displacement-risk hedges, since they are useful to all firms, young and old.
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Therefore, the model can account for a ranking of expected returns, whereby private equity

investments command the highest risk compensation followed by public equities, followed by

land and natural resources. (e) The model makes joint predictions for asset returns, aggregate

growth, inequality, and the relative size of the private equity industry as a fraction of total

investments. Taken together, these predictions allow us to better understand the type of

economic forces that are likely to be driving broad economic trends. For instance, increased

creative destruction leads to strong growth, increased displacement of old rich by young rich,

strong (realized) returns to investing in new ventures, and a larger share of investments in

private equity, consistent with the events of the mid-to-late nineties. By contrast, a growing

share of private equity investments, but with unchanged GDP growth, smaller displacement

of old by young rich, less dispersed PE returns, and comparatively weaker returns to investing

in new ventures (consistent with the post-2000 experience), may be just the result of a more

developed private-equity industry that facilitates a larger quantity of transfers.
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Gârleanu, N., S. Panageas, and J. Yu (2015). Financial entanglement: A theory of incomplete integration,
leverage, crashes, and contagion. American Economic Review 105 (7), 1979–2010.

Geanakoplos, J., M. Magill, and M. Quinzii (2004). Demography and the long-run predictability of the stock
market. Brookings Papers on Economic Activity 2004 (1), 241–307.

Gomes, F. and A. Michaelides (2005). Optimal life-cycle asset allocation: Understanding the empirical
evidence. Journal of Finance 60 (2), 869–904.

Gomes, J., L. Kogan, and L. Zhang (2003). Equilibrium cross section of returns. Journal of Political
Economy 111 (4), 693–732.

Gomez, M. (2017). Asset prices and wealth inequality. Working Paper, Columbia University.

Gomez, M. (2023). Decomposing the growth of top wealth shares. Econometrica 91 (3), 979–1024.

Gouin-Bonenfant, E., A. Fagereng, M. Gomez, M. Holm, B. Moll, and G. Natvik (2023). Asset-price
redistribution. Working paper.

Gupta, A. and S. Van Nieuwerburgh (2021). Valuing private equity investments strip by strip. Journal of
Finance, forthcoming .

Irie, M. (2024). Innovations in entrepreneurial finance and top wealth inequality. Working paper.

Jefferies (2023). Global secondary market review.

43



Kaplan, S. N. and A. Schoar (2005). Private equity performance: Returns, persistence, and capital flows.
The Journal of Finance 60 (4), 1791–1823.

Kogan, L., D. Papanikolaou, and N. Stoffman (2020). Left behind: Creative destruction, inequality, and the
stock market. Journal of Political Economy 128 (3), 855–906.

Korteweg, A. and S. Nagel (2016). Risk-adjusting the returns to venture capital. The Journal of Fi-
nance 71 (3), 1437–1470.

Korteweg, A. G., S. Panageas, and A. Systla (2023). Private equity for pension plans? evaluating private
equity performance from an investor’s perspective. Working paper, UCLA and USC.

Krueger, D. and F. Kubler (2006). Pareto-improving social security reform when financial markets are
incomplete!? American Economic Review 96 (3), 737–755.

Krueger, D. and H. Lustig (2010). When is market incompleteness irrelevant for the price of aggregate risk
(and when is it not)? J. Economic Theory 145 (1), 1–41.

Loualiche, E. (2021). Asset pricing with entry and imperfect competition. Forthcoming at the Journal of
Finance.

Lucas, R. (1978). Asset prices in an exchange economy. Econometrica 46 (6), 1429–45.

Mauboussin, M. J. and D. Callahan (2020, August 4). Public to private equity in the united states: A
long-term look. Counterpoint Global Insights, Morgan Stanley.

Maurer, T. (2017). Asset pricing implications of demographic change. Working Paper, Olin School of
Business.

Opp, C. C. (2019). Venture capital and the macroeconomy. The Review of Financial Studies 32 (11),
4387–4446.

Panageas, S. (2020). The implications of heterogeneity and inequality for asset pricing. Foundations and
Trends in Finance 12 (3), 199–275.

Papanikolaou, D. (2011). Investment shocks and asset prices. Journal of Political Economy 119 (4), 639–685.

Rubinstein, M. (1976). The valuation of uncertain income streams and the pricing of options. Bell Journal
of Economics 7 (2), 407–425.

Schmidt, L. D. W. (2015). Climbing and falling off the ladder: Asset pricing implications of labor market
event risk. Unpublished working paper, MIT Sloan.

Schneider, A. (2022). Risk-sharing and the term structure of interest rates. The Journal of Finance 77 (4),
2331–2374.

Sorensen, M. and R. Jagannathan (2015). The public market equivalent and private equity performance.
Financial Analysts Journal 71 (4).

Sorensen, M., N. Wang, and J. Yang (2014). Valuing private equity. The Review of Financial Studies 27 (7),
1977–2021.

Storesletten, K., C. I. Telmer, and A. Yaron (2007). Asset pricing with idiosyncratic risk and overlapping
generations. Review of Economic Dynamics 10 (4), 519–548.

Toda, A. A. and K. J. Walsh (2019). The Equity Premium and the One Percent. The Review of Financial
Studies 33 (8), 3583–3623.

Vayanos, D. and J.-L. Vila (2021). A preferred-habitat model of the term structure of interest rates. Econo-
metrica 89 (1), 77–112.

44



Selective List of Mathematical Symbols

At Total number of blueprints p. 12
Mi,t+1/Mi,t SDF of an individual investor p. 22
Mt+1/Mt Average SDF, Mt+1/Mt = Et[Mi,t+1/Mi,t|ΓE

t+1,Γ
N
t+1,Γ

U
t+1] p. 22

RE
t+1 Return on market portfolio p. 18

RN
i,t+1 PE return to agent in location i p. 18

Vt,s Value function p. 12
Wi,t Wealth of agent in location i p. 18
Xi,t+1 Idiosyncratic component of individual wealth growth p. 21
Yt Aggregate output p. 12
Zt Neutral productivity factor p. 12
ΓE
t Number of new blueprints distributed to existing firms p. 13

ΓN
t Number of new blueprints distributed to entrepreneurs p. 13

ΓU
t Number of new blueprints completely untradable p. 13

Γt Γt = ΓE
t + ΓN

t + ΓU
t p. 13

ΠE
t Market value of a blueprint p. 18

ΠN
j,t Price at which entrepreneur j sells share; ΠN

j,t = ΠN
t ∀j in equilibrium p. 17

Hi,t+1 Auxiliary variable: Hi,t+1 =
(
1 + ηΓE

t+1

)−1 × ηυ
∆

∫ i+∆/2
i−∆/2 dΓN

i,t+1 p. 20
α Quantifies effect of new blueprints on existing blueprint profits p. 12
β Time discount rate p. 12
η Scaling factor for ΓE

t , Γ
N
t , and ΓU

t p. 13
γ Risk aversion p. 12
PN Normalized value of PE share p. 20
β̂ Effective time discount rate p. 12
λ Death probability and entry rate p. 12
ϕB Portfolio allocation to risk-free asset p. 18
ϕE Portfolio allocation to market asset p. 18
ϕN Portfolio allocation to PE p. 18
πt Profit accruing to a single blueprint p. 12

PE Normalized value of a blueprint, PE =
ΠE

t
πt

p. 20

PN Normalized value of a PE share, PN = Pt
Atπt

p. 20
θ Fraction of agents who are entrepreneurs p. 13
υ Fraction of own firm an entrepreneur sells p. 16
εt+1 Log growth in Zt p. 12
ζj,t Idiosyncratic shock determining exposure of qj,t+1 to ΓN

t+1 + ΓU
t+1 p. 31

al Shape parameter of Γl p. 13
bl Rate parameter of Γl p. 13
c Consumption-to-wealth ratio p. 20
ct,s Consumption p. 12
dLj,t+1 Proportion of ΓN

t+1 accruing to location j: dLj,t+1 = dΓN
j,t+1/Γ

N
t+1 p. 21

qj,t+1 Firm j profit growth normalized by market profit growth p. 31

rft Interest rate p. 18
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A Proofs

Proof of Proposition 1. We start by positing that, with Rf = 1+rf , the portfolio choice

of all investors obeys the pair of Euler equations

Et

[(
ϕBRf + ϕERE

t+1 + ϕNRN
i,t+1

)−γ (
RE

t+1 −RN
i,t+1

)]
= 0 (29)

Et

[(
ϕBRf + ϕERE

t+1 + ϕNRN
i,t+1

)−γ (
RE

t+1 −Rf
)]

= 0. (30)

Using the definitions of ϕE and ϕN and imposing ϕB = 0 and market clearing in the stock

markets implies ϕE = PE

PE+PN and ϕN = 1− ϕE. Accordingly, using (10) and (11),

ϕBRf + ϕERE
t+1 + ϕNRN

i,t+1 =
PE

PE + PN
RE

t+1 (1 +Hi,t+1) . (31)

Using (31) and (11) inside (29) and noting that PE

PN = ϕE

1−ϕE leads to (13).

Having determined ϕE, it is straightforward to determine PE and PN . To start, we note

that with unitary IES c = 1− β̂. Aggregating (7) across agents and imposing asset market

clearing implies

Wt = Atπt

(
PE + PN + 1

)
. (32)

Using goods market clearing, with aggregate consumption equal to Atπt, along with c = 1−β̂

we obtain

1 + PE + PN =
1

1− β̂
. (33)

Combining (33) with ϕE = PE

PE+PN results in (14)–(15).

Using (31) together with (30) for portfolio choice, yields (16).

The final step of the proof is to show that equations (29) and (30) characterize the

portfolio choice of all investors. Clearly, this is true for all investors born at times s < t,

since the probability of death is age independent and all investors have access to the same

return distributions. Equations (29) and (30) also describe the portfolio choices of investors

arriving at the beginning of t+ 1, who are simply endowed with the blueprints ΓU
t+1. When

υ < 1, the Euler equations of investors born at time t, who could receive some additional
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allocation of blueprints at time t + 1, is in principle different. Specifically, equations (29)

and (30) become

lim
h→0

Et

[(
ϕBRf + ϕERE

t+1 + ϕNRN
i,t+1 +K

1

h

∫ i+h
2

i−h
2

dΓN
j,t+1

)−γ (
RE

t+1 −RN
i,t+1

)]
= 0 (34)

lim
h→0

Et

[(
ϕBRf + ϕERE

t+1 + ϕNRN
i,t+1 +K

1

h

∫ i+h
2

i−h
2

dΓN
j,t+1

)−γ (
RE

t+1 −Rf
)]

= 0. (35)

where K = (1−υ)λ
PN is constant.

Lemma 2, which we state and prove below, ensures that for any ε > 0, the probability

of the event 1
h

∫ i+h
2

i−h
2

dΓN
j,t+1 > ε can be made less than ε by limiting h to be small enough.

Additionally, on the complementary, ε-probability event, the kernel in (34)–(35) is bounded

above by the kernel in (29)–(30), namely
(
ϕBRf + ϕERE

t+1 + ϕNRN
i,t+1

)−γ
. Since ε can be

chosen to be arbitrarily small, any solution to the set of Euler equations (29)–(30) also solves

(34)–(35).

Proof of Proposition 2. Equation (17) follows from (32) and (4). To arrive at equation

(18), we note that equation (33) and c = 1− β̂ imply

1− c =
PE + PN

1 + PE + PN
. (36)

Proof of Proposition 3. Throughout this proof, we will make use of the following lemma,

which we prove after the proof of the proposition.

Lemma 1 Let Xi, i = 1, . . . , n, n ≥ 1, Yi, i = 1, . . . , p, p ≥ 0, and Zi, i = 1, . . . , q, q ≥ 0,

be independent (one-dimensional) non-trivial random variables and functions f : Rn+p → R
and g : Rn+q → R non-decreasing in the first n arguments and strictly increasing in at least

one of the first n arguments. Then

Cov (f(X1, . . . , Xn, Y1, . . . , Yp), g(X1, . . . , Xn, Z1, . . . , Zq)) > 0. (37)

To prove statement (i) of the proposition, note that when when υ = 1 and ∆ = 1,
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Mt+1

Mt
∝
(
1 + ηΓE

t+1 + ηΓN
t+1 + ηΓU

t+1

)−γ(1−α)
, which is decreasing in ΓN

t+1,Γ
E
t+1, and ΓU

t+1.

Applying Lemma 1 with f(ΓE
t+1,Γ

N
t+1,Γ

U
t+1) = −

(
1 + ηΓE

t+1 + ηΓN
t+1 + ηΓU

t+1

)−γ(1−α)
and

g(ΓE
t+1,Γ

N
t+1,Γ

U
t+1) = ΓN

t+1 leads to statement (i).

To prove statement (ii), note first that, for υ = 0,

Mt+1

Mt

∝
(
RE

t+1

)−γ ∝ (1 + ηΓE
t+1)

−γ
(
1 + ηΓE

t+1 + ηΓN
t+1 + ηΓU

t+1

)αγ
, (38)

which is increasing in ΓN
t+1, Γ

U
t+1, and −ΓE

t+1. Using continuity around υ = 0, along with

Lemma 1, proves statement (ii) for small enough υ.

Finally, for the case of small ∆, we are going to use the following result, which we

formalize as a lemma, and prove after the end of the proof to the proposition.

Lemma 2 The random variable 1
∆

∫ ∆

0
dLj,t+1 tends to zero in probability as ∆ tends to zero.

That is, for every ε > 0

lim
∆→0

Prob

(
1

∆

∫ ∆

0

dLj,t+1 < ϵ

)
= 1. (39)

Note now that, for any υ > 0 and ∆ > 0,

Mi,t+1

Mi,t

∝
(
1 + ηΓE

t+1 + ηΓN
t+1 + ηΓU

t+1

)αγ (
1 + ηΓE

t+1 +
ηυ

∆
ΓN
t+1

∫ i+∆
2

i−∆
2

dLj,t+1

)−γ

. (40)

Partial differentiation of the right-hand side of (40) with respect to ΓE
t+1 shows that if

1
∆

∫ i+∆
2

i−∆
2

dLj,t+1 < 1 then
Mi,t+1

Mi,t
is decreasing in ΓE

t+1. Similarly, if 1
∆

∫ i+∆
2

i−∆
2

dLj,t+1 < 1 then
Mi,t+1

Mi,t
is increasing in ΓN

t+1.
Mi,t+1

Mi,t
is always increasing in ΓU

t+1.

Now define Qi,t+1 = 1
∆

∫ i+∆
2

i−∆
2

dLj,t+1 and also define fi,t+1 = f(ΓE
t+1,Γ

N
t+1,Γ

U
t+1, Qi,t+1) to

be equal to the right-hand side of (40). Using that Qi,t+1 is independent of ΓE
t+1 and ΓN

t+1,

the covariance of
Mi,t+1

Mi,t
and ΓN

t+1 is proportional to

cov
(
fi,t+1,Γ

N
t+1

)
= E

[
cov
(
fi,t+1,Γ

N
t+1|Qi,t+1

)]
+cov

(
E (fi,t+1|Qi,t+1) ,E

(
ΓN
t+1|Qi,t+1

))
. (41)

By the independence of Qi,t+1 and ΓN
t+1, the second term on the RHS in (41) is zero, since

48



E
[
ΓN
t+1|Qi,t+1

]
= E

[
ΓN
t+1

]
. Therefore we may write

cov
(
fi,t+1,Γ

N
t+1

)
= E

[
1Qi,t+1<1cov

(
fi,t+1,Γ

N
t+1|Qi,t+1

)
+ (42)

1Qi,t+1≥1cov
(
fi,t+1,Γ

N
t+1|Qi,t+1

)]
.

The first term inside the square brackets of (42) is non-negative. For the second term we

have that

∣∣E [1Qi,t+1≥1cov
(
fi,t+1,Γ

N
t+1|Qi,t+1

)]∣∣ ≤ Pr (Qi,t+1 ≥ 1)×σ
(
ΓN
t+1

)
× sup

Qi,t+1≥1
σ (fi,t+1|Qi,t+1) ,

(43)

where we used the Cauchy-Schwarz inequality, and due to the independence of ΓN
t+1 and

Qi,t+1 we have σ
(
ΓN
t+1|Qi,t+1

)
= σ

(
ΓN
t+1

)
. By Lemma 2, the term Pr (Qi,t+1 ≥ 1) approaches

zero as ∆ → 0. Also, supQi,t+1≥1 σ (fi,t+1|Qi,t+1) is finite because for values Qi,t+1 ≥ 1 we

have

σ2 (fi,t+1|Qi,t+1) ≤ Et

[
f 2
i,t+1|Qi,t+1

]
≤ Et

[
f 2
i,t+1|Qi,t+1 = 1

]
< ∞, (44)

where the second inequality follows from the fact that
(
1 + ηΓE

t+1 + ηυΓN
t+1Qi,t+1

)−2γ
is de-

creasing in Qi,t+1. Using (44) and taking the limit as ∆ → 0 on the right-hand side of (43)

shows that the second term on the right-hand side of (42) converges to zero. This implies

that cov
(
fi,t+1,Γ

N
t+1

)
≥ 0.

Finally, for part (iii) we use again Lemma 1, predicated on the strict monotonicity of

Mi,t+1 in ΓU
t+1 and the independence of ΓU

t+1 from the other random variables.

Proof of Lemma 1. For simplicity of notation, we omit the arguments to the functions

f and g. Also, we denote by Y and Z the vectors consisting of all of the random variables

Yi and Zi, respectively. Let’s first note that

Cov(f, g) = E [Cov(f, g|Y,Z)] + Cov (E [f |Y,Z] ,E [g|Y,Z]) (45)

and observe that (i) for every realization of (Y,Z) f and g are non-decreasing and further,

strictly increasing in at least one argument — let that be X1 without loss of generality; and
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(ii) E [f |Y,Z] = E [f |Y] is a function of Y, and thus indepent of E [g|Y,Z] = E [g|Z], which
is a function of Z, so that the second term on the right-hand side of (45) is zero.

We therefore only need to prove the statement for p = q = 0. We have

E[fg] = E[E[fg|Xn]] > E[E[f |Xn]E[g|Xn]], (46)

where we are making use of the induction hypothesis that the result holds for the n − 1

variables X1,...,Xn−1. (Note that, trivially, for every realization of Xn both f and g continue

to be strictly increasing in X1.) It also holds that E[f |Xn] and E[g|Xn] are non-decreasing

functions of Xn, however, so that we can apply the result with n = 1 (the “classical” result)

to infer

E[E[f |Xn]E[g|Xn]] ≥ E[E[f |Xn]]E[E[g|Xn]] = E[f ]E[g]. (47)

The desired conclusion follows by combining the two inequalities. The only remaining

detail to fill in is to observe that, for n = 1 again, if f and g are strictly increasing then

Cov(f, g) > 0, providing the initial step for the induction argument.

Proof of Lemma 2. The distribution of
∫ ∆

0
dLj,t+1 is beta with parameters aN∆ and

aN(1−∆). We wish to estimate

Pr

(∫ ∆

0

dLj,t+1 < ε∆

)
=

Γ(aN)

Γ(aN∆)Γ(aN(1−∆))

∫ ε∆

0

xaN∆−1(1− x)a
N (1−∆)−1dx, (48)

where Γ(·) is the Gamma function. The right-hand side of the (48) has the same limit as

∆ → 0 as

lim
∆→0

1

Γ(aN∆)

∫ ε∆

0

xaN∆−1dx = lim
y→0

1

Γ(y)

∫ yε

aN

0

xy−1dx = lim
y→0

(ε/aN)yyy

yΓ(y)
= 1, (49)

since both the numerator and the denominator tend to 1.

Proof of Proposition 4. For the proof of this proposition we simplify matters by taking

η = 1. (This is without loss of generality, after adjusting the rate parameter of the Gamma

distribution by η.) We also economize notation by dropping time subscripts from the random
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variables. Let us first note that, given that E[MiR
E] = E[MiR

N
i ],

E[RN
i ]

E[RE]
> 1 ⇔ E[MiR

N
i ]

E[MiRE]
<

E[RN
i ]

E[RE]
. (50)

This equivalence implies that proving the statements of the proposition amounts to proving

that
E[Mid1R

N
i ]

E[Mid2RE ]
<

E[d1RN
i ]

E[d2RE ]
for any arbitrary positive scalars d1 and d2. This fact allows us to

replace each of RN
i and RE with an arbitrary (scalar) multiple of itself when proving the

second inequality of (50). Next note that

RE ∝ ξE ≡ eε(1 + ΓE + ΓN + ΓU)−α(1 + ΓE) (51)

RN
i ∝ ξNi ≡ eε(1 + ΓE + ΓN + ΓU)−αΓN 1

∆

∫ i+∆
2

i−∆
2

dLj (52)

Mi ∝ ζi ≡ eε(1 + ΓE + ΓN + ΓU)αγ

(
1 + ΓE + ΓN υ

∆

∫ i+∆
2

i−∆
2

dLj

)−γ

, (53)

and therefore we replace (50) with

E[RN
i ]

E[RE]
> 1 ⇔ E[ζiξ

N
i ]

E[ζiξE]
<

E[ξNi ]

E[ξE]
. (54)

(i) Taking the limit as υ → 0 eliminates the last term inside the second parenthesis on

the right-hand side of (53). In words, ζi does not depend on L. Because eϵ and 1
∆

∫ i+∆
2

i−∆
2

dLj

are independent of all other random variables, the inequality
E[ζiξ

N
i ]

E[ζiξE ]
<

E[ξNi ]

E[ξE ]
simplifies to

E
[
(1 + ΓE + ΓN + ΓU)α(γ−1)(1 + ΓE)−γΓN

]
E [(1 + ΓE + ΓN + ΓU)α(γ−1)(1 + ΓE)1−γ]

>
E
[
(1 + ΓE + ΓN + ΓU)−αΓN

]
E [(1 + ΓE + ΓN + ΓU)−α(1 + ΓE)]

, (55)

which is the same as

E
[
(ξE)1−γ ΓN

1+ΓE

]
E [(ξE)1−γ]

>
E
[
ξE ΓN

1+ΓE

]
E [ξE]

. (56)

We note that ξE increases with ΓE and decreases with ΓN , precisely the opposite pattern

from ΓN

1+ΓE . We next use Lemma 1 with X1 ≡ ΓN , X2 ≡ (1+ΓE)−1, and X3 ≡ ΓU , and treat

−ξE as an increasing function in each Xi, as is Γ
N/(1 + ΓE). We then apply the same logic
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to (ξE)1−γ. Consequently, we have

Cov

(
ξE,

ΓN

1 + ΓE

)
< 0 < Cov

(
(ξE)1−γ,

ΓN

1 + ΓE

)
. (57)

Inequality (56) now follows using the definition of covariance.

(ii) For this part we rely on the fact that 1
∆

∫ i+∆
2

i−∆
2

dLj tends to 0 in probability as ∆ → 0

(Lemma 2). We next prove that this property implies that E[ζiξ
N
i ] → 0 as ∆ → 0, where

ζiξ
N
i is given by

(1 + ΓE+ΓN + ΓU)α(γ−1)

(
1 + ΓE + ΓN υ

∆

∫ i+∆
2

i−∆
2

dLj

)−γ

ΓN υ

∆

∫ i+∆
2

i−∆
2

dLj (58)

≤ (1 + ΓE + ΓN + ΓU)α(γ−1)

(
1 + ΓN υ

∆

∫ i+∆
2

i−∆
2

dLj

)−1

ΓN υ

∆

∫ i+∆
2

i−∆
2

dLj.

To show this result, define the random variables X and Y as

X = (1 + ΓE + ΓN + ΓU)α(γ−1) (59)

Y = ΓN υ

∆

∫ i+∆
2

i−∆
2

dLj (60)

and note that Y tends to zero in probability as ∆ goes to 0.

For an arbitrary ε, choose ∆ such that Y < ε with probability 1− ε. We have

E

[
X

Y

1 + Y

]
= E

[
X1

X<ε−
1
2

Y

1 + Y
1Y <ε

]
+ E

[
X1

X<ε−
1
2

Y

1 + Y
1Y≥ε

]
+

E

[
X1

X≥ε−
1
2

Y

1 + Y

]
≤ E

[
ε−

1
21

X<ε−
1
2
ε1Y <ε

]
+ E

[
ε−

1
21

X<ε−
1
2
1Y≥ε

]
+ E

[
X1

X≥ε−
1
2

]
≤ ε

1
2 + ε

1
2 + E

[
X1

X≥ε−
1
2

]
, (61)

where the very last term tends to zero as ε → 0 since X has finite mean.

On the other hand, E[ζiξ
E] and E[ξNi ] are bounded below away from 0 (since 1

∆
E
∫ i+∆

2

i−∆
2

dLj =

1 for all ∆ > 0), implying that E[RN
i ] > E[RE].
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Proof of Proposition 5. The proof for the log case (γ = 1) is contained in the text. As

long as RN
i,t+1 and RE

t+1 are not fully correlated, the expectation E
[
RN

i,t+1

RE
t+1

]
is strictly larger

than 1 when γ = 1, and therefore by continuity also for γ close enough to 1.

Proof of Proposition 6. It follows from (13) that

ϕN =
Et

[(
RE

t+1

)1−γ
(1 +Hi,t+1)

−γ Hi,t+1

]
Et

[(
RE

t+1

)1−γ
(1 +Hi,t+1)

1−γ
] , (62)

which specializes to

ϕN = Et

[
(1 +Hi,t+1)

−1Hi,t+1

]
(63)

in the logarithmic utility case. The term inside the expectation is an increasing and concave

function of Hi,t+1.

Since Hi,t+1 increases strictly in η and in υ, so does ϕN . Further, an increase in ∆ results

in a dominating random variable Hi,t+1 in the sense of second-order stochastic dominance,

and therefore a higher expectation in (63).

Having established strict monotonicity in the logarithmic-utility case, it follows by conti-

nuity that, for any compact set of parameters, there exists an open set for γ containing the

value 1 on which the proposition holds.

Proof of Proposition 7. The price of a firm i is given by

ΠE
i,t = Et

[
Mt+1

Mt

(
Ai,t+1πt+1 +ΠE

i,t+1

)]
.

Using the assumption that the shock ζi is drawn in an i.i.d. fashion across periods and that

the price-to-dividend ratio,
ΠE

i,t

Ai,tπt
, is only a function of i, we obtain

ΠE
i,t

Ai,tπt

= Et

[
Mt+1

Mt

Ai,t+1πt+1

Ai,tπt

](
1 + Ei

ΠE
i,t+1

Ai,t+1πt+1

)
, (64)

where Ei denotes averaging across i. The i.i.d. draws of ζi across periods imply that

Et (Ri,t+1) = Et

[(
Ai,t+1πt+1

Ai,tπt

)]
×
(

ΠE
i,t

Ai,tπt

)−1

×
(
1 + Ei

ΠE
i,t+1

Ai,t+1πt+1

)
and therefore equation (64)
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can be written as

1 = Et

Mt+1

Mt

Ai,t+1πt+1

Ai,tπt

E
(

Ai,t+1πt+1

Ai,tπt

)
Et (Ri,t+1) ,

which, using (1 + rf )−1 = Et

[
Mt+1

Mt

]
, gives

1 + rf

Et [Ri,t+1]
= Et

 Mt+1

Mt

Et

[
Mt+1

Mt

] Ai,t+1πt+1

Ai,tπt

Et

(
Ai,t+1πt+1

Ai,tπt

)


= 1 + Covt

(
Mt+1

Mt

/
Et

[
Mt+1

Mt

]
,
Ai,t+1πt+1

Ai,tπt

/
Et

[
Ai,t+1πt+1

Ai,tπt

])
. (65)

Since this equation applies for any i, it implies equation (27).

B Micro-Foundations for the Endowment Assumptions

In the text, we simply postulated aggregate output, the profit share and the labor share

exogenously. Here we show how to micro-found (2), and (3) in a production economy.

Specifically, assume that there is a continuum of intermediate-good firms that own non-

perishable blueprints. Each blueprint allows the production of an intermediate good. The

final good is produced by a representative, competitive firm, which purchases xjt units of

each intermediate good j and produces Yt units of the final good. The production function

is given by

Yt = Zt(L
F
t )

1−α

∫ At

0

xα
jtdj

where Zt is neutral productivity,46 At is the number of blueprints, LF
t is the amount of

labor used in the production of final goods, and xjt is the input of the intermediate input

j. The intermediate good j is supplied by firms engaging in monopolistic competition, and

the production of one unit of the intermediate good j requires one unit of labor. Labor is

supplied inelastically and the total measure of workers is 1− θ.

46By “neutral” we mean productivity that does not lead to disruption of the profit shares of existing firms,
as we explain below.
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The final-goods firm profit function is Yt −
∫
pjtxjt − wtL

F
t , where wt is the prevailing

wage and pjt are the prices of each intermediate good. Maximizing over wt leads to wtL
F
t =

(1− α)Yt, and maximizing over xjt leads to the demand function for intermediate goods,

pjt = Zt

(
LF
t

)1−α
αxα−1

jt . Aggregating over j and using the definition of Yt implies that∫ At

0
pjtxjtdj = αYt.

In turn, the maximization problem of the intermediate-goods firm is maxxjt
pjt (xjt)xjt−

wtxjt, where we have used the assumption that one unit of xjt requires one unit of labor.

The first-order condition is the familiar pricing rule pjt =
wt

α
. As a result, aggregate profits

are equal to
∫ At

0
(pjt − wt)xjtdj = (1− α)

∫ At

0
pjtxjtdj = α (1− α)Yt. (Note that the final

goods firms make zero profits.)

Since all firms face the same wage, wt, the pricing rule Zt

(
LF
t

)1−α
αxα−1

jt = pjt = wt

α

implies that xjt = xt is identical across j.Producing one unit of j takes one unit of labor

and therefore xt =
1
At
LI
t , where LI

t is the total labor employed by intermediate goods firms.

Accordingly, Yt = Zt

(
LF
t

)1−α ∫ At

0
xα
t dj = Zt

(
LF
t

)1−α (
LI
t

)α
A1−α

t . In turn, the first order

conditions LF
t = (1−α)Yt

wt
(for the final goods firm) and LI

t = α2 Yt

wt
for the aggregate labor

demand of intermediate goods firms imply that
LF
t

LI
t
is constant. Because LI

t + LF
t = L, it

follows that both LI
t = LI and LF

t = LF are constants, and therefore (2) follows. (Note that

we can always L so that
(
LF
t

)1−α
LI
t = 1)

Finally, because xjt = xt and pjt = pt, it follows that the profits per intermediate good

firm are equal to each other and given by πt =
∫At
0 (pjt−wt)xjtdj

At
= α(1− α)Yt, which is (3).

In Section 5.2 we introduce a non-displaceable factor. In the context of the micro-

foundation of our model, the introduction of such a production factor (say “land”) is straight-

forward. To be as explicit as possible that land is not tied to any intermediate good, we

assume that land is useful only in the production of the final good. Land is owned by existing

agents and rented out to final-good producing firms, so that aggregate output is given by

Yt = ZtF
ζ
t

(
LF
t

)1−α−ζ
∫ At

0

xα
j,tdj, (66)

where ζ ∈ (0, 1 − α) is the share of output that accrues to land. Total land is fixed and

normalized to one (Ft = 1). Given the Cobb-Douglas structure of (66), it follows that the

rental rate of land is rFt = ζYt.

In Section 5.4 we consider an extension where labor is a composite good, so that workers of
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different cohorts obtain different wages wt,s. The Cobb-Douglas specification in (28) implies

that the wage bill of cohort s is wt,slt,s =
at,s∑
s≤t at,s

(1−α(1−α))Yt. In words, this means that

the wage bill of cohort s is a fraction at,s∑
s≤t at,s

of aggregate labor income (1 − α(1 − α))Yt.

Because the endowments (at birth) of a worker-cohort born at time s and an entrepreneur-

cohort born at time s exhibit the same growth rates, the consumption growth rates of workers

and entrepreneurs are aligned.
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